中国机械工程 ›› 2025, Vol. 36 ›› Issue (8): 1796-1810.DOI: 10.3969/j.issn.1004-132X.2025.08.015
• 智能制造 • 上一篇
收稿日期:
2024-07-12
出版日期:
2025-08-25
发布日期:
2025-09-18
作者简介:
肖海宁*,男,1985年生,副教授、博士。研究方向为车间智能调度、生产物流系统仿真分析与优化调控技术。发表论文20余篇。E-mail: xiao226563@163.com。
基金资助:
Haining XIAO1(), Huihui SUN1, Minghua PENG1,2, Jianzhou WANG1
Received:
2024-07-12
Online:
2025-08-25
Published:
2025-09-18
摘要:
为了满足汽车整车焊装、涂装及总装车间不同的车身排产序列需求,以最小化产线停产时间和成本为综合优化目标,建立了整车多关联车间协同排产优化数学模型,并设计了一种基于改进候鸟优化算法的协同排产方法。为了快速获取候鸟个体对应的多关联车间协同排产方案,设计了基于启发式排产规则的解码策略;针对传统候鸟优化算法邻域结构单一导致算法收敛速度慢的缺陷,设计了基于多种邻域结构的领飞鸟进化策略;为了提升算法的全局寻优能力,设计了融合交叉与邻域搜索的跟飞鸟进化策略。最后以某新能源汽车生产线为实例,开发了整车多关联车间协同排产仿真分析平台以验证所提排产方法。仿真实验结果表明,与改进的遗传算法、改进的蚁群算法等方法相比,所设计的改进候鸟优化算法能够获得更优的解集。
中图分类号:
肖海宁, 孙慧慧, 彭明花, 王健洲. 基于改进候鸟优化算法的整车多关联车间协同排产方法[J]. 中国机械工程, 2025, 36(8): 1796-1810.
Haining XIAO, Huihui SUN, Minghua PENG, Jianzhou WANG. An IMBOA Based Collaborative Sequencing Method for Automotive Multi Associated Workshops[J]. China Mechanical Engineering, 2025, 36(8): 1796-1810.
符号 | 定义 |
---|---|
客户订单总数 | |
第 | |
可选车型的总数 | |
客户订单 | |
可选车身颜色总数 | |
客户订单 | |
客户订单 | |
客户订单 | |
客户订单 | |
订单拖期违约金支付系数 | |
客户订单的集合 | |
客户订单 | |
焊装车间排产序号集合 | |
客户订单 | |
所有客户订单在涂装车间的排产序号集合 | |
客户订单 | |
所有客户订单在总装车间的排产序号集合 | |
生产节拍 | |
涂装车间单次换色所需成本 | |
关键重要零部件的集合 | |
关键重要零部件的种类数 | |
焊装车间单次切换车型造成的停产时间 | |
焊装车间单次切换车型增加的生产成本 | |
焊装车间排产序列车型切换次数 | |
涂装车间相邻车身颜色是否不同,为1表示颜色不同,反之为0 | |
焊装车间最小批量,每批次批量为 | |
在无需清洗喷枪的前提下,涂装车间能够连续喷涂的车身数 | |
涂装车间单次切换颜色造成的停产时间 | |
涂装车间连续喷涂相同颜色车身时的喷枪清洗次数 | |
总装车间各工位工人所需的休息时间平均值 | |
总装车间某工位装配第 | |
各订单装配后休息时间拖欠额的平均值 | |
总装车间某工位装配作业所需工时 | |
总装车间各订单平均返修一次所需成本 | |
总装车间订单平均返修率 | |
总装车间排产顺序编号为 | |
总装车间所有客户订单对关键重要零部件 | |
总装车间前 | |
总装车间平均物料供应成本 | |
立体库车位容量 | |
立体库对白车身调序的最大范围 | |
立体库对彩车身调序的最大范围 |
表1 符号定义
Tab. 1 Symbol definition
符号 | 定义 |
---|---|
客户订单总数 | |
第 | |
可选车型的总数 | |
客户订单 | |
可选车身颜色总数 | |
客户订单 | |
客户订单 | |
客户订单 | |
客户订单 | |
订单拖期违约金支付系数 | |
客户订单的集合 | |
客户订单 | |
焊装车间排产序号集合 | |
客户订单 | |
所有客户订单在涂装车间的排产序号集合 | |
客户订单 | |
所有客户订单在总装车间的排产序号集合 | |
生产节拍 | |
涂装车间单次换色所需成本 | |
关键重要零部件的集合 | |
关键重要零部件的种类数 | |
焊装车间单次切换车型造成的停产时间 | |
焊装车间单次切换车型增加的生产成本 | |
焊装车间排产序列车型切换次数 | |
涂装车间相邻车身颜色是否不同,为1表示颜色不同,反之为0 | |
焊装车间最小批量,每批次批量为 | |
在无需清洗喷枪的前提下,涂装车间能够连续喷涂的车身数 | |
涂装车间单次切换颜色造成的停产时间 | |
涂装车间连续喷涂相同颜色车身时的喷枪清洗次数 | |
总装车间各工位工人所需的休息时间平均值 | |
总装车间某工位装配第 | |
各订单装配后休息时间拖欠额的平均值 | |
总装车间某工位装配作业所需工时 | |
总装车间各订单平均返修一次所需成本 | |
总装车间订单平均返修率 | |
总装车间排产顺序编号为 | |
总装车间所有客户订单对关键重要零部件 | |
总装车间前 | |
总装车间平均物料供应成本 | |
立体库车位容量 | |
立体库对白车身调序的最大范围 | |
立体库对彩车身调序的最大范围 |
1 | A | 白 | H | 6/1 |
2 | B | 黑 | L | 6/2 |
3 | C | 白 | M | 6/3 |
4 | A | 红 | L | 6/3 |
5 | A | 红 | M | 6/2 |
6 | C | 白 | H | 6/3 |
7 | A | 黑 | L | 6/1 |
8 | B | 白 | L | 6/2 |
9 | C | 红 | L | 6/1 |
10 | A | 红 | M | 6/2 |
11 | A | 白 | H | 6/1 |
12 | C | 黑 | M | 6/3 |
13 | A | 白 | L | 6/2 |
14 | B | 红 | L | 6/3 |
15 | C | 红 | M | 6/1 |
16 | A | 白 | L | 6/2 |
17 | B | 黑 | M | 6/1 |
18 | C | 白 | M | 6/2 |
表2 客户订单信息列表
Tab.2 Customer order information list
1 | A | 白 | H | 6/1 |
2 | B | 黑 | L | 6/2 |
3 | C | 白 | M | 6/3 |
4 | A | 红 | L | 6/3 |
5 | A | 红 | M | 6/2 |
6 | C | 白 | H | 6/3 |
7 | A | 黑 | L | 6/1 |
8 | B | 白 | L | 6/2 |
9 | C | 红 | L | 6/1 |
10 | A | 红 | M | 6/2 |
11 | A | 白 | H | 6/1 |
12 | C | 黑 | M | 6/3 |
13 | A | 白 | L | 6/2 |
14 | B | 红 | L | 6/3 |
15 | C | 红 | M | 6/1 |
16 | A | 白 | L | 6/2 |
17 | B | 黑 | M | 6/1 |
18 | C | 白 | M | 6/2 |
车型 | 所需数量 | 批量 | 批次数 |
---|---|---|---|
A | 8 | 3 | 3 |
B | 4 | 3 | 2 |
C | 6 | 3 | 2 |
表3 各车型所需生产的车身数、批量和批次信息
Tab.3 The number, batch and lot information of the car bodies to be produced for each car model
车型 | 所需数量 | 批量 | 批次数 |
---|---|---|---|
A | 8 | 3 | 3 |
B | 4 | 3 | 2 |
C | 6 | 3 | 2 |
预排序次数 | 客户订单每次预排序后的订单编号序列 |
---|---|
第一次 | 1,7,9,11,15,17,2,5,8,10,13,16,18,3,4,6,12,14 |
第二次 | 1,7,11,5,10,13,16,4,17,2,8,14,9,15,18,3,6,12 |
第三次 | 1,11, 13,16,7,5,10,4,17,2,8,14,9,15,18,3,6,12 |
第四次 | 13,1,16,11,7,4,5,10,2,17,8,14,15,9,18,3,6,12 |
表4 客户订单集每次预排序结果
Tab.4 Each pre-sort result of the customer order collection
预排序次数 | 客户订单每次预排序后的订单编号序列 |
---|---|
第一次 | 1,7,9,11,15,17,2,5,8,10,13,16,18,3,4,6,12,14 |
第二次 | 1,7,11,5,10,13,16,4,17,2,8,14,9,15,18,3,6,12 |
第三次 | 1,11, 13,16,7,5,10,4,17,2,8,14,9,15,18,3,6,12 |
第四次 | 13,1,16,11,7,4,5,10,2,17,8,14,15,9,18,3,6,12 |
[1] | LU Chao, XIAO Shengqiang, LI Xinyu, et al. An Effective Multi-objective Discrete Grey Wolf Optimizer for a Real-world Scheduling Problem in Welding Production[J]. Advances in Engineering Software, 2016, 99(C):161-176. |
[2] | 孟磊磊, 张超勇, 邵新宇, 等. 基于约束规划的焊接车间多资源约束调度研究[J]. 华中科技大学学报(自然科学版), 2018, 46(6):1-7. |
MENG Leilei, ZHANG Chaoyong, SHAO Xinyu, et al. Constraint Programming for Multi-resource Constrained Welding Shop Scheduling[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(6):1-7. | |
[3] | WANG Jingjing, WANG Ling, XIU Xia. A Cooperative Memetic Algorithm for Energy-aware Distributed Welding Shop Scheduling Problem[J]. Engineering Applications of Artificial Intelligence, 2023, 120:105877. |
[4] | WANG Cuiyu, ZHAO Li, LI Xinyu, et al. An Improved Grey Wolf Optimizer for Welding Shop Inverse Scheduling[J]. Computers & Industrial Engineering, 2022, 163:107809. |
[5] | RAO Yunqing, MENG Ronghua, ZHA Jing, et al. Bi-objective Mathematical Model and Improved Algorithm for Optimisation of Welding Shop Scheduling Problem[J]. International Journal of Production Research, 2020, 58(9):2767-2783. |
[6] | KRYSTEK J, BYSKO S. The Follow-up Control of the Body Sequencing Process at the Paint Shop[J]. Mechanik, 2019(7):462-464. |
[7] | WINTER F, MUSLIU N. Constraint-based Scheduling for Paint Shops in the Automotive Supply Industry[J]. ACM Transactions on Intelligent Systems and Technology, 2021, 12(2):1-25. |
[8] | CHUTIMA P, SUCHANUN T. Productivity Improvement with Parallel Adjacent U-shaped Assembly Lines[J]. Advances in Production Engineering & Management, 2019, 14(1):51-64. |
[9] | THIRUVADY D, MORGAN K, AMIR A, et al. Large Neighbourhood Search Based on Mixed Integer Programming and Ant Colony Optimisation for Car Sequencing[J]. International Journal of Production Research, 2020, 58(9):2696-2711. |
[10] | 李燚, 唐倩, 刘联超, 等. 基于改进蚁群算法的汽车混流装配调度模型求解[J]. 中国机械工程, 2021, 32(9): 1126-1133. |
LI Yi, TANG Qian, LIU Lianchao, et al. An Improved ACO Algorithm for Automobile Mixed-flow Assembly Scheduling Problems[J]. China Mechanical Engineering, 2021, 32(9):1126-1133. | |
[11] | ZHANG Beikun, XU Liyun, ZHANG Jian. A Multi-objective Cellular Genetic Algorithm for Energy-oriented Balancing and Sequencing Problem of Mixed-model Assembly Line[J]. Journal of Cleaner Production, 2020, 244:118845. |
[12] | LOUIS A, ALPAN G, PENZ B, et al. Mixed-model Sequencing versus Car Sequencing: Comparison of Feasible Solution Spaces[J]. International Journal of Production Research, 2023, 61(10):3415-3434. |
[13] | SHI Xiaolin, TIAN Xitian, GU Jianguo, et al. A Hybrid Approach of Case- and Rule-based Reasoning to Assembly Sequence Planning[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(1):221-236. |
[14] | GUO Kai, LIU Rui, DUAN Guijiang, et al. Research on Dynamic Decision-making for Product Assembly Sequence Based on Connector-linked Model and Deep Reinforcement Learning[J]. Journal of Manufacturing Systems, 2023, 71:451-473. |
[15] | 沈振宇, 唐倩, 黄涛, 等. 面向均衡生产的多级流水车间调度模型求解[J]. 计算机集成制造系统, 2019, 25(11):2743-2752. |
SHEN Zhenyu, TANG Qian, HUANG Tao, et al. Solution of Multistage Flow Shop Scheduling Model for Leveling Production[J]. Computer Integrated Manufacturing Systems, 2019, 25(11):2743-2752. | |
[16] | 杜宝钗. 多车间多产线工厂布局下的汽车关联排序问题[D]. 北京: 北京交通大学, 2022. |
DU Baochai. Car Linkage Sequencing Problem for Multi Mixed-Assembly Lines in Multi Workshops [D]. Beijing: Beijing Jiaotong University, 2022. | |
[17] | 李聪波, 赵德, 杨秒, 等. 汽车整车多级生产线协同排序优化方法[J]. 计算机集成制造系统, 2024, 30(6):2025-2035. |
LI Congbo, ZHAO De, YANG Miao, et al. Collaborative Sequencing Optimization Method for Automobile Multi-stage Production Line[J]. Computer Integrated Manufacturing Systems, 2024, 30(6):2025-2035. | |
[18] | WU Jiaxi, DING Yongkang, SHI Leyuan. Mathematical Modeling and Heuristic Approaches for a Multi-stage Car Sequencing Problem[J]. Computers & Industrial Engineering, 2021, 152:107008. |
[19] | YANG Miao, LI Congbo, TANG Ying, et al. A Collaborative Resequencing Approach Enabled by Multi-core PREA for a Multi-stage Automotive Flow Shop[J]. Expert Systems with Applications, 2024, 237:121825. |
[20] | 王秋莲, 段星皓. 基于高维多目标候鸟优化算法的柔性作业车间调度[J]. 中国机械工程, 2022, 33(21):2601-2612. |
WANG Qiulian, DUAN Xinghao. Scheduling of Flexible Job Shop Based on High-dimension and Multi-objective Migrating Bird Optimization Algorithm[J]. China Mechanical Engineering, 2022, 33(21):2601-2612. | |
[21] | ZHANG Zikai, TANG Qiuhua, HAN Dayong, et al. Multi-manned Assembly Line Balancing with Sequence-dependent Set-up Times Using an Enhanced Migrating Birds Optimization Algorithm[J]. Engineering Optimization, 2023, 55(7):1243-1262. |
[22] | FU Yaping, MA Xiaomeng, GAO Kaizhou, et al. Multi-objective Migrating Birds Optimization for Solving Stochastic Home Health Care Routing and Scheduling Problems Considering Caregiver Working Time Constraints[J]. Swarm and Evolutionary Computation, 2024, 85:101484. |
[23] | 肖海宁, 楼佩煌, 武星, 等. 多载量自动导引车系统防死锁任务调度方法[J]. 计算机集成制造系统, 2022, 28(11):3325-3339. |
XIAO Haining, LOU Peihuang, WU Xing, et al. Deadlock-free Dispatching Method for Multiple-load Automatic Guided Vehicle System[J]. Computer Integrated Manufacturing Systems, 2022, 28(11):3325-3339. | |
[24] | ZITZLER E, THIELE L, LAUMANNS M, et al. Performance Assessment of Multiobjective Optimizers: an Analysis and Review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2):117-132. |
[25] | GUERREIRO A P, FONSECA C M, PAQUETE L. The Hypervolume Indicator: Computational Problems and Algorithms[J]. ACM Computing Surveys, 2021, 54(6):1-42. |
[26] | KOUKA N, BENSAID F, FDHILA R, et al. A Novel Approach of Many-objective Particle Swarm Optimization with Cooperative Agents Based on an Inverted Generational Distance Indicator[J]. Information Sciences, 2023, 623:220-241. |
[27] | SHANG Ke, ISHIBUCHI H, HE Linjun, et al. A Survey on the Hypervolume Indicator in Evolutionary Multiobjective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1):1-20. |
[28] | 王洪,吴立辉,陈达,等.基于孪生人工蜂鸟算法的多作业模式半导体封测环节调度[J].中国机械工程,2024,35(2):260-267. |
WANG Hong, WU Lihui, CHEN Da, et al. Scheduling in SAT in Multi-operation Mode Based on Artificial Hummingbird Algorithm with Twin Population[J]. China Mechanical Engineering, 2024, 35(2):260-267. |
[1] | 魏书鹏, 唐红涛, 李西兴, 杨冠宇, 张健. 考虑双资源约束的柔性机械加工车间逆调度问题研究[J]. 中国机械工程, 2024, 35(03): 457-471. |
[2] | 孙爱红, 宋豫川, 杨云帆, 雷琦. 考虑关键件加工质量的双资源约束车间调度算法[J]. 中国机械工程, 2022, 33(21): 2590-2600. |
[3] | 武星, 翟晶晶, 楼佩煌, 胡亚, 肖海宁. 考虑任务行程时间的多载量自动导引车系统防死锁任务调度[J]. 中国机械工程, 2021, 32(23): 2840-2849. |
[4] | 苑明海, 李亚东, 裴凤雀, 张理志, 顾文斌. 基于改进案例推理的智能车间扰动处理决策研究[J]. 中国机械工程, 2021, 32(20): 2458-2467,2491. |
[5] | 刘雪梅;刘涛;郭欢. 基于可用度评价的混联生产线缓冲区配置优化[J]. 中国机械工程, 2020, 31(18): 2220-2230. |
[6] | 刘彩洁;徐志涛;张钦;张力菠;姚坤. 分时电价下基于NSGA-Ⅱ的柔性作业车间绿色调度[J]. 中国机械工程, 2020, 31(05): 576-585. |
[7] | 陈刚1, 2;曹赛2;王益群1, 2;赵团民3. 电液位置伺服系统的频域设限加权切换控制[J]. 中国机械工程, 2017, 28(17): 2056-2061. |
[8] | 邹攀, 李蓓智, 杨建国, 施烁, 梁越昇, . 基于分层蚁群遗传算法的多目标柔性作业车间调度方法[J]. 中国机械工程, 2015, 26(21): 2873-2879,2884. |
[9] | 王献红, 史国权. 一种新型逻辑智能推理方法在混流生产线排产优化中的应用[J]. 中国机械工程, 2015, 26(10): 1320-1323. |
[10] | 王献红, 史国权. 一种基于单元化制造及时间任务总线的计划调度模式构建[J]. 中国机械工程, 2015, 26(5): 637-640. |
[11] | 陈进, 邓玉锋, 刘琴, 崔俊华. 超薄铝箔加工的动态集成排产方法[J]. 中国机械工程, 2014, 25(19): 2647-2652. |
[12] | 赵燕伟, 张立萍, 张景玲, 王万良, 王海燕. 加工装配式流水车间节能调度建模与优化[J]. 中国机械工程, 2014, 25(16): 2196-2203. |
[13] | 周玉林, 张志强, 侯雨雷, 王建新, 喻宝林. 面向大型机器人冲压线的动作方案评价指标[J]. 中国机械工程, 2014, 25(14): 1900-1904. |
[14] | 凌海峰, 王西山. 求解柔性作业车间调度问题的两阶段参数自适应蚁群算法[J]. 中国机械工程, 2013, 24(24): 3380-3385. |
[15] | 侯雨雷, 张志强, 谭候金, 王建新, 喻宝林, 周玉林. 冲压自动线机器人与压力机动作协调及其运动仿真[J]. 中国机械工程, 2013, 24(23): 3186-3190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||