中国机械工程 ›› 2025, Vol. 36 ›› Issue (8): 1740-1748.DOI: 10.3969/j.issn.1004-132X.2025.08.009
• 机械基础工程 • 上一篇
收稿日期:
2024-03-15
出版日期:
2025-08-25
发布日期:
2025-09-18
通讯作者:
曾云
作者简介:
周思柱,男,1963 年生,教授、博士。研究方向为石油机械现代设计技术与方法。zhsz@yangtzeu.edu.cn。基金资助:
Sizhu ZHOU(), Qiongyao XIANG, Yun ZENG(
)
Received:
2024-03-15
Online:
2025-08-25
Published:
2025-09-18
Contact:
Yun ZENG
摘要:
为了评估工程构件在变幅载荷下的疲劳寿命,提高疲劳寿命的预测精度,以应力-寿命曲线(S⁃N曲线)为基础,考虑工程结构件承受循环载荷导致材料内部晶界开裂、滑移挤入、挤出引起的损伤和不可逆退化,引入了一种新形式的材料记忆性能函数,建立了一种新型疲劳累积损伤模型。采用30NiCrMoV12和30CrMnSiA两种材料的泵头体进行两级加载试验,以验证所提模型对疲劳寿命预测的准确性。结果表明:考虑材料动态记忆特性的疲劳累积损伤模型与其他模型相比,在高-低两级加载工况下的疲劳寿命预测结果在1.5倍的误差带内,预测误差均值小于0.1,具有较高的预测精度。
中图分类号:
周思柱, 向琼垚, 曾云. 考虑材料动态记忆特性的疲劳累积损伤模型[J]. 中国机械工程, 2025, 36(8): 1740-1748.
Sizhu ZHOU, Qiongyao XIANG, Yun ZENG. Fatigue Cumulative Damage Model Considering Dynamic Memory Properties of Materials[J]. China Mechanical Engineering, 2025, 36(8): 1740-1748.
编号 | 模型 | 载荷效应系数 | |||||
---|---|---|---|---|---|---|---|
低⁃高加载 | 高⁃低加载 | ||||||
1 | Miner法则[ | ||||||
2 | Corten模型[ | ||||||
3 | Kwofie模型[ | ||||||
4 | 文献[ | ||||||
5 | 本文改进模型 |
表1 五种模型载荷效应系数在不同加载模式下的比较
Tab.1 Comparison of load effect coefficients of five models under different loading modes
编号 | 模型 | 载荷效应系数 | |||||
---|---|---|---|---|---|---|---|
低⁃高加载 | 高⁃低加载 | ||||||
1 | Miner法则[ | ||||||
2 | Corten模型[ | ||||||
3 | Kwofie模型[ | ||||||
4 | 文献[ | ||||||
5 | 本文改进模型 |
材料 | 30NiCrMoV12 | 30CrMnSiA |
---|---|---|
弹性模量/GPa | 210 | 210 |
泊松比 | 0.28 | 0.3 |
密度/(kg·m-3) | 7850 | 7850 |
表2 两种材料的力学性能参数
Tab.2 Mechanical property parameters of two materials
材料 | 30NiCrMoV12 | 30CrMnSiA |
---|---|---|
弹性模量/GPa | 210 | 210 |
泊松比 | 0.28 | 0.3 |
密度/(kg·m-3) | 7850 | 7850 |
材料 | 30NiCrMoV12 | 30CrMnSiA | |||||
---|---|---|---|---|---|---|---|
加载/MPa | 485 | 465 | 450 | 420 | 400 | 586 | 482 |
应力/MPa | 494.11 | 473.74 | 458.45 | 427.9 | 407.51 | 596.85 | 490.93 |
应变 | 2.3529 | 2.2559 | 2.1831 | 2.0376 | 1.9405 | 2.8421 | 2.3377 |
表3 两种材料拉伸件数值模拟的应力应变结果
Tab.3 The stress and strain results of numerical simulation of two kinds of material tensile parts
材料 | 30NiCrMoV12 | 30CrMnSiA | |||||
---|---|---|---|---|---|---|---|
加载/MPa | 485 | 465 | 450 | 420 | 400 | 586 | 482 |
应力/MPa | 494.11 | 473.74 | 458.45 | 427.9 | 407.51 | 596.85 | 490.93 |
应变 | 2.3529 | 2.2559 | 2.1831 | 2.0376 | 1.9405 | 2.8421 | 2.3377 |
加载次序 | 应力 | 编号 | 循环次数 | |||
---|---|---|---|---|---|---|
n1 | 实验结果 | 本模型计算值 | 仿真计算值 | |||
n2 | ||||||
高-低加载 | 1 | 12 750 | 52 306 | 41 248 | 53 288 | |
2 | 28 500 | 45 774 | 27 498 | 46 634 | ||
3 | 41 250 | 16 035 | 13 749 | 16 336 | ||
4 | 18 016 | 66 854 | 51 040 | 68 111 | ||
5 | 35 028 | 29 614 | 34 026 | 30 171 | ||
6 | 52 121 | 37 221 | 17 013 | 37 921 | ||
7 | 19 081 | 79 354 | 60 247 | 80 844 | ||
8 | 41 165 | 23 910 | 40 165 | 24 359 | ||
9 | 59 907 | 16 035 | 20 082 | 16 336 | ||
低-高加载 | 10 | 37 056 | 52 950 | 109 310 | 51 955 | |
11 | 74 040 | 44 975 | 72 879 | 44 130 | ||
12 | 108 890 | 47 090 | 36 439 | 46 205 | ||
13 | 28 230 | 58 635 | 85 407 | 57 533 | ||
14 | 55 982 | 57 015 | 56 938 | 55 943 | ||
15 | 85 835 | 49 168 | 28 469 | 48 244 | ||
16 | 27 969 | 71 031 | 85 407 | 69 697 | ||
17 | 56 989 | 38 963 | 56 938 | 38 231 | ||
18 | 84 975 | 11 025 | 28 469 | 10 818 |
表4 30NiCrMoV12钢在两级加载条件下的试验观测结果
Tab.4 Experimental observation results of 30NiCrMoV12 steel under two-stage loading condition
加载次序 | 应力 | 编号 | 循环次数 | |||
---|---|---|---|---|---|---|
n1 | 实验结果 | 本模型计算值 | 仿真计算值 | |||
n2 | ||||||
高-低加载 | 1 | 12 750 | 52 306 | 41 248 | 53 288 | |
2 | 28 500 | 45 774 | 27 498 | 46 634 | ||
3 | 41 250 | 16 035 | 13 749 | 16 336 | ||
4 | 18 016 | 66 854 | 51 040 | 68 111 | ||
5 | 35 028 | 29 614 | 34 026 | 30 171 | ||
6 | 52 121 | 37 221 | 17 013 | 37 921 | ||
7 | 19 081 | 79 354 | 60 247 | 80 844 | ||
8 | 41 165 | 23 910 | 40 165 | 24 359 | ||
9 | 59 907 | 16 035 | 20 082 | 16 336 | ||
低-高加载 | 10 | 37 056 | 52 950 | 109 310 | 51 955 | |
11 | 74 040 | 44 975 | 72 879 | 44 130 | ||
12 | 108 890 | 47 090 | 36 439 | 46 205 | ||
13 | 28 230 | 58 635 | 85 407 | 57 533 | ||
14 | 55 982 | 57 015 | 56 938 | 55 943 | ||
15 | 85 835 | 49 168 | 28 469 | 48 244 | ||
16 | 27 969 | 71 031 | 85 407 | 69 697 | ||
17 | 56 989 | 38 963 | 56 938 | 38 231 | ||
18 | 84 975 | 11 025 | 28 469 | 10 818 |
加载次序 | 应力 | 编号 | 循环次数 | |||
---|---|---|---|---|---|---|
n1 | 实验结果 | 本模型计算值 | 仿真计算值 | |||
n2 | ||||||
高-低加载 | 1 | 1200 | 36 911 | 40 185 | 37 594 | |
2 | 1800 | 32 450 | 38 185 | 33 051 | ||
3 | 3000 | 16 002 | 28 184 | 16 298 | ||
4 | 5000 | 6969 | 18 183 | 7098 | ||
低-高加载 | 5 | 13 000 | 6602 | 8183 | 6480 | |
6 | 15 000 | 6501 | 4531 | 6381 | ||
7 | 25 000 | 5400 | 3932 | 5300 | ||
8 | 35 000 | 4428 | 2733 | 4346 | ||
9 | 45 000 | 3254 | 734 | 3194 |
表5 30CrMnSiA钢在两级加载下的试验观测结果
Tab.5 Experimental observation results of 30CrMnSiA steel under two-stage loading condition
加载次序 | 应力 | 编号 | 循环次数 | |||
---|---|---|---|---|---|---|
n1 | 实验结果 | 本模型计算值 | 仿真计算值 | |||
n2 | ||||||
高-低加载 | 1 | 1200 | 36 911 | 40 185 | 37 594 | |
2 | 1800 | 32 450 | 38 185 | 33 051 | ||
3 | 3000 | 16 002 | 28 184 | 16 298 | ||
4 | 5000 | 6969 | 18 183 | 7098 | ||
低-高加载 | 5 | 13 000 | 6602 | 8183 | 6480 | |
6 | 15 000 | 6501 | 4531 | 6381 | ||
7 | 25 000 | 5400 | 3932 | 5300 | ||
8 | 35 000 | 4428 | 2733 | 4346 | ||
9 | 45 000 | 3254 | 734 | 3194 |
加载次序 | 应力 | 编号 | 循环次数 | ||
---|---|---|---|---|---|
n1 | 实际寿命 | 本模型预测值 | |||
n2 | |||||
高-低加载 | 1 | 3300 | 2019 600 | 1623 379 | |
2 | 3300 | 2027 520 | 1623 379 | ||
3 | 3300 | 2890 800 | 1623 379 | ||
4 | 3300 | 1642 080 | 1623 379 | ||
5 | 3300 | 2117 280 | 1623 379 | ||
6 | 3300 | 1615 680 | 1623 379 | ||
7 | 3300 | 1547 040 | 1623 379 | ||
8 | 3300 | 2164 800 | 1623 379 | ||
9 | 3300 | 1953 600 | 1623 379 |
表6 实际工况下泵头体的实际寿命与理论寿命比较(两级加载)
Tab.6 Comparison of the actual life and theoretical life of the pump head under actual working conditions(two⁃stage loading)
加载次序 | 应力 | 编号 | 循环次数 | ||
---|---|---|---|---|---|
n1 | 实际寿命 | 本模型预测值 | |||
n2 | |||||
高-低加载 | 1 | 3300 | 2019 600 | 1623 379 | |
2 | 3300 | 2027 520 | 1623 379 | ||
3 | 3300 | 2890 800 | 1623 379 | ||
4 | 3300 | 1642 080 | 1623 379 | ||
5 | 3300 | 2117 280 | 1623 379 | ||
6 | 3300 | 1615 680 | 1623 379 | ||
7 | 3300 | 1547 040 | 1623 379 | ||
8 | 3300 | 2164 800 | 1623 379 | ||
9 | 3300 | 1953 600 | 1623 379 |
[1] | 金丹, 韩高枫, 龙浩跃, 等. 316L不锈钢非比例路径疲劳失效的微观机理[J]. 材料研究学报, 2022, 36(11): 845-849. |
JIN Dan, HAN Gaofeng, LONG Haoyue, et al. Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel[J]. Chinese Journal of Materials Research, 2022, 36(11): 845-849. | |
[2] | 张朝铭. 激光再制造涂层微观组织及低周疲劳性能研究[D]. 汉中: 陕西理工大学, 2024. |
ZHANG Chaoming). Study on Microstructure and Low-cycle Fatigue Properties of Laser Remanufactured Coatings[D]. Hanzhong: Shaanxi University of Technology, 2024. | |
[3] | 董瑞, 陈林, 岑耀东, 等. 不同热处理条件下贝氏体钢的微观组织和疲劳裂纹扩展[J]. 金属热处理, 2022, 47(2): 153-158. |
DONG Rui, CHEN Lin, CEN Yaodong, et al. Microstructure and Fatigue Crack Growth of a Bainitic Steel under Different Heat Treatments[J]. Heat Treatment of Metals, 2022, 47(2): 153-158. | |
[4] | 董晨辉, 吴博雅, 曾艳, 等. 应变幅对SDHC钢热机械疲劳行为及微观组织演变的影响[J]. 材料工程, 2023, 51(12): 184-190. |
DONG Chenhui, WU Boya, ZENG Yan, et al. Effect of Strain Amplitude on Thermo-mechanical Fatigue Behavior and Microstructure Evolution of SDHC Steel[J]. Journal of Materials Engineering, 2023, 51(12): 184-190. | |
[5] | 贺小帆, 刘文珽, 王忠波, 等. 预腐蚀对30CrMnSiNi2A连接件疲劳寿命影响的试验研究[J]. 机械强度, 2009, 31(4): 664-669. |
HE Xiaofan, LIU Wenting, WANG Zhongbo, et al. pre-corrosion Degradation Influence on the Fatigue Life for 30CrMnSiNi2A Specimen[J]. Journal of Mechanical Strength, 2009, 31(4): 664-669. | |
[6] | 金平, 王刚, 谭晓明. 裂纹萌生寿命预腐蚀影响规律[J]. 海军航空工程学院学报, 2011, 26(5): 567-570. |
JIN Ping, WANG Gang, TAN Xiaoming. Pre-corrosion Influence Law of the Crack Initiation Life[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(5): 567-570. | |
[7] | 朱顺鹏, 黄洪钟, 谢里阳. 考虑小载荷强化的模糊疲劳寿命预测理论[J]. 航空学报, 2009, 30(6): 1048-1052. |
ZHU Shunpeng, HUANG Hongzhong, XIE Liyang. Prediction of Fuzzy Fatigue Life under Low Amplitude Loading Strengthening[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1048-1052. | |
[8] | 朱晓阳. 疲劳累积损伤理论的研究及其发展[J]. 机械工程材料, 1987, 11(3): 11-16. |
ZHU Xiaoyang. The Study of Fatigue Accumulating Damage Theory and It’s Development[J]. Materials for Mechanical Engineering, 1987, 11(3): 11-16. | |
[9] | CORTEN H T, DOLAN T J. Cumulative Fatigue Damage [C]∥ Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers. London, 1956:235-246. |
[10] | KWOFIE S, RAHBAR N. A Fatigue Driving Stress Approach to Damage and Life Prediction under Variable Amplitude Loading[J]. International Journal of Damage Mechanics, 2013, 22(3): 393-404. |
[11] | ZHU Shunpeng, LIAO Ding, LIU Qiang, et al. Nonlinear Fatigue Damage Accumulation: Isodamage Curve-based Model and Life Prediction Aspects[J]. International Journal of Fatigue, 2019, 128: 105185. |
[12] | 高凯, 刘纲, 蒋伟. 考虑荷载相互作用的非线性时变疲劳可靠性分析[J]. 铁道学报, 2022, 44(4): 46-53. |
GAO Kai, LIU Gang, JIANG Wei. Analysis of Nonlinear Time-varying Fatigue Reliability Considering Load Interaction[J]. Journal of the China Railway Society, 2022, 44(4): 46-53. | |
[13] | SUBRAMANYAN S. A Cumulative Damage Rule Based on the Knee Point of the S-N Curve[J]. Journal of Engineering Materials and Technology, 1976, 98(4): 316-321. |
[14] | 张拓, 刘坤, 何爱民, 等. 基于动态剩余S-N曲线的线性疲劳寿命预测模型[J]. 重庆大学学报, 2023, 46(3): 84-93. |
ZHANG Tuo, LIU Kun, HE Aimin, et al. A Linear Fatigue Life Prediction Model Based on Dynamic Residual S-N Curve[J]. Journal of Chongqing University, 2023, 46(3): 84-93. | |
[15] | 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 230-240. |
FENG Weisen, YANG Chengpeng, JIA Fei. Review and Evaluation of Fatigue Damage Evolution Models for Composite Laminates[J]. Materials Reports, 2024, 38(9): 230-240. | |
[16] | DATTOMA V, GIANCANE S, NOBILE R, et al. Fatigue Life Prediction under Variable Loading Based on a New Non-linear Continuum Damage Mechanics Model[J]. International Journal of Fatigue, 2006, 28(2): 89-95. |
[17] | 方义庆, 胡明敏, 罗艳利. 基于全域损伤测试建立的连续疲劳损伤模型[J]. 机械强度, 2006, 28(4): 582-586. |
FANG Yiqing, HU Mingmin, LUO Yanli. New Continuous Fatigue Damage Model Based on Whole Damage Field Measurement[J]. Journal of Mechanical Strength, 2006, 28(4): 582-586. | |
[18] | PENG Zhaochun, HUANG Hongzhong, ZHOU Jie, et al. A New Cumulative Fatigue Damage Rule Based on Dynamic Residual S-N Curve and Material Memory Concept[J]. Metals, 2018, 8(6): 456. |
[19] | REJOVITZKY E, ALTUS E. On Single Damage Variable Models for Fatigue[J]. International Journal of Damage Mechanics, 2013, 22(2): 268-284. |
[20] | BÖHM E, KUREK M, ŁAGODA T. Accumulation of Fatigue Damages for Block-type Loads with Use of Material Memory Function[J]. Solid State Phenomena, 2014, 224: 39-44. |
[21] | BÖHM E, KUREK M, JUNAK G, et al. Accumulation of Fatigue Damage Using Memory of the Material[J]. Procedia Materials Science, 2014, 3: 2-7. |
[22] | ANDERSON R B, TWENEY R D. Artifactual Power Curves in Forgetting[J]. Memory & Cognition, 1997, 25(5): 724-730. |
[23] | MINER B M A. Cumulative Damage in Fatigue [J]. Journal of Applied Mechanics,1945,12(3): A159-A164. |
[24] | 彭兆春. 基于疲劳损伤累积理论的结构寿命预测与时变可靠性分析方法研究[D]. 成都: 电子科技大学, 2017. |
PENG Zhaochun. Research on Methods for Structural Life Prediction and Time-dependent Reliability Analysis Using Cumulative Fatigue Damage Theories [D]. Chengdu: University of Electronic Science and Technology of China, 2017. | |
[25] | 吴志峯, 高建雄, 徐蓉霞, 等. 考虑载荷交互影响的非均匀损伤累积模型[J]. 中国机械工程, 2023, 34(22): 2659-2664. |
WU Zhifeng, GAO Jianxiong, XU Rongxia, et al. A Non-uniform Damage Accumulation Model Considering Load Interactions[J]. China Mechanical Engineering, 2023, 34(22): 2659-2664. | |
[26] | 刘俭辉, 吴生磊. 基于临界距离理论的缺口件多轴疲劳寿命预测[J]. 西安理工大学学报, 2024, 40(4): 538-544. |
LIU Jianhui, WU Shenglei. Multiaxial Fatigue Life Prediction of Notched Parts Based on the Theory of Critical Distance[J]. Journal of Xi’an University of Technology, 2024, 40(4): 538-544. |
[1] | 祖海英, 孙金山, 叶卫东, 李大奇. 采油单螺杆泵动态力学特性及疲劳寿命预测研究[J]. 中国机械工程, 2024, 35(08): 1358-1365. |
[2] | 吴志峯, 高建雄, 徐蓉霞, 朱鹏年. 考虑载荷交互影响的非均匀损伤累积模型[J]. 中国机械工程, 2023, 34(22): 2659-2664,2673. |
[3] | 刘志鹏;周杰;王时龙;王四宝;杨文翰. 基于有限元的多股螺旋弹簧疲劳寿命预测[J]. 中国机械工程, 2021, 32(02): 141-146. |
[4] | 金丹;左皓中;刘兵;吕春堂;娄天培. 316L不锈钢non-Masing特性分析和疲劳寿命预测[J]. 中国机械工程, 2020, 31(24): 2931-2936. |
[5] | 米承继1,2,3;谷正气1,3;蹇海根1;张勇1,3;李文泰1;余冰1. 基于改进应变能密度法的电动轮自卸车车架焊缝疲劳寿命预测[J]. 中国机械工程, 2019, 30(01): 96-104. |
[6] | 申杰斌, 唐东林. 一种考虑应力梯度的疲劳寿命预测方法[J]. 中国机械工程, 2017, 28(01): 40-44. |
[7] | 李国永, 谷正气, 张, 沙, 马骁骙, 李吉平, 胡楷. 基于不等间距灰色模型的疲劳寿命预测方法[J]. 中国机械工程, 2015, 26(24): 3267-3274. |
[8] | 刘喆, 陶凤和, 贾长治. 基于行驶仿真试验的履带式车辆行星架结构优化[J]. 中国机械工程, 2015, 26(23): 3260-3265. |
[9] | 程军圣, 袁毅, 喻镇涛, 袁辉. 考虑平均应力效应的Tovo-Benasciutti疲劳寿命预测模型[J]. 中国机械工程, 2015, 26(2): 196-199. |
[10] | 回丽, 于翔, 许良, 周松, 王磊. 航空铝合金腐蚀坑当量化技术[J]. 中国机械工程, 2015, 26(16): 2233-2236,2243. |
[11] | 童水光, 王相兵, 魏超, 张帅. 液压挖掘机臂杆结构疲劳寿命预测方法研究[J]. 中国机械工程, 2014, 25(16): 2167-2172. |
[12] | 李源, 韩旭, 姜潮, 王林军. 一种基于灰色预测模型的预测桁架结构疲劳寿命的数值方法 [J]. 中国机械工程, 2011, 22(6): 710-714. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||