中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2369-2378.DOI: 10.3969/j.issn.1004-132X.2025.10.026
• 生物制造 • 上一篇
唐欣尧1,2(
), 殷榕1,2, 王旭鹏1,2(
), 杨佳音1,2, 刘晓宜1,2, 郝雨阳1,2
收稿日期:2024-07-25
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
王旭鹏
作者简介:唐欣尧,女,1995年生,讲师。研究方向为运动生物力学分析、人机交互与智能机器人控制、可穿戴外骨骼创新设计。E-mail:tangxy@xaut.edu.cn基金资助:
Xinyao TANG1,2(
), Rong YIN1,2, Xupeng WANG1,2(
), Jiayin YANG1,2, Xiaoyi LIU1,2, Yuyang HAO1,2
Received:2024-07-25
Online:2025-10-25
Published:2025-11-05
Contact:
Xupeng WANG
摘要:
针对现有外骨骼与人体腿部协调性差的问题,设计了一种基于人机匹配性的膝踝关节外骨骼。通过动作捕捉系统采集下肢关节运动的时空数据,结合生理膝关节滚滑运动特性,设计了能够适应人体膝关节运动瞬心的J字形运动轨迹的四杆机构,提出了模拟膝关节运动的连杆机构优化设计方法。数值模拟验证了优化后四杆机构能够很好地贴合人体运动,结合角度传感器实现了助力外骨骼控制系统的开发,进而借助步态和肌电实验对助力外骨骼性能有效性进行了验证。实验结果表明,穿戴后膝关节角度峰值变化幅度小于5%,膝关节力矩减小,股外侧肌、腓肠肌、股二头长头肌等肌肉活动度下降。
中图分类号:
唐欣尧, 殷榕, 王旭鹏, 杨佳音, 刘晓宜, 郝雨阳. 膝踝关节外骨骼人机匹配性设计与优化[J]. 中国机械工程, 2025, 36(10): 2369-2378.
Xinyao TANG, Rong YIN, Xupeng WANG, Jiayin YANG, Xiaoyi LIU, Yuyang HAO. Design and Optimization of Human-machine Compatibility of Knee-ankle Exoskeletons[J]. China Mechanical Engineering, 2025, 36(10): 2369-2378.
| 33.45 | 38.30 | 51.74 | 41.00 | 59.82 | 25.63 |
表1 四杆优化尺寸
Tab.1 Optimized dimensions of four-bar linkage
| 33.45 | 38.30 | 51.74 | 41.00 | 59.82 | 25.63 |
| [1] | 陈鹰, 杨灿军.人体智能系统理论与方法[M]. 杭州 :浙江大学出版社, 2006. |
| CHEN Ying, YANG Canjun. Theory and Methods of Human Intelligent Systems[M]. Hangzhou:Zhejiang University Press, 2006. | |
| [2] | LERNER Z F, GASPARRI G M, BAIR M O, et al. An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals with Cerebral Palsy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018,26(10):1985-1993. |
| [3] | HIDAYAH R, XIN J, CHAMARTHY S, et al. Comparing the Performance of a Cable-driven Active Leg Exoskeleton (C-ALEX) Over-ground and on a Treadmill[C]∥7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). Netherland, 2018:299-304. |
| [4] | KWON J, PARK J H, KU S, et al. A Soft Wearable Robotic Ankle-foot-orthosis for Post-stroke Patients[J]. IEEE Robotics & Automation Letters,2019,4(3):2547-2552. |
| [5] | 杨业勤.基于柔绳互绞驱动原理的柔性下肢外骨骼机器人研究[D]. 哈尔滨:哈尔滨工业大学, 2021. |
| YANG Yeqin. Research on a Lightweight and Portable Lower Limb Exosuit Based on Twisted Strings Actuator[D]. Harbin:Harbin Institute of Technology, 2021. | |
| [6] | 刘洋.基于绳-滑轮机构的欠驱动下肢外骨骼研究[D]. 哈尔滨:哈尔滨工业大学,2018. |
| LIU Yang. Research on the Cable-pulley Underactuated Lower Limb Exoskeleton[D]. Harbin:Harbin Institute of Technology, 2018. | |
| [7] | 陈春杰.基于柔性传动的助力全身外骨骼机器人系统研究[D]. 深圳:中国科学院大学(中国科学院深圳先进技术研究院),2017. |
| CHEN Chunjie. Research on Power-assisted Full-body Exoskeleton Robotic System Based on Flexible Drive[D]. Shenzhen:Shenzhen Institutes of Advanced Technology (Chinese Academy of Sciences), 2017. | |
| [8] | 赵新刚,谈晓伟,张弼.柔性下肢外骨骼机器人研究进展及关键技术分析[J].机器人,2020,42(3):365-384. |
| ZHAO Xingang, TAN Xiaowei, ZHANG Bi. Development of Soft Lower Extremity Exoskeleton and Its Key Technologies:a Survey[J]. Robot,2020,42(3):365-384. | |
| [9] | 曹品.基于气动肌肉的柔性下肢外骨骼设计[D].西安:西南交通大学, 2021. |
| CAO Pin. Design of Flexible Lower Limb Exoskeleton Based on Pneumatic Muscle[D]. Xi'an:Southwest Jiaotong University, 2021. | |
| [10] | NASIRI R, AHMADI A, AHMADABADI M N. Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering:a Publication of the IEEE Engineering in Medicine and Biology Society, 2018, 26(10):2026-2032. |
| [11] | WILIAN M S, GLAUCO A C, ADRIANO A S. Design and Control of an Active Knee Orthosis Driven by a Rotary Series Elastic Actuator[J]. Control Engineering Practice,2017,58:37-38. |
| [12] | 陈朝峰,杜志江,张慧,等.基于柔性驱动关节的下肢外骨骼双模态切换控制[J].机器人,2021,43(5):513-525. |
| CHEN Chaofeng, DU Zhijiang, ZHANG Hui, et al. Double-mode Switching Control of a Lower Limb Exoskeleton Based on Flexible Drive Joint[J]. Robot, 2021,43(5):513-525. | |
| [13] | FUGE A, HERRON C, BEITER B, et al. Design, Development, and Analysis of the Lower Body of Next-generation 3D-printed Humanoid Research Platform:PANDORA[J]. Robotica 2023, 41:2177-2206. |
| [14] | SUN Z, LI Y, ZI B, et al. Design, Modeling, and Evaluation of a Hybrid Driven Knee-ankle Orthosis with Shape Memory Alloy Actuators[J]. Journal of Mechanical Design,2023,145(6):063301. |
| [15] | HAO Z X, LENG H J, QU C Y, et al. Biomechanics of the Bone and the Joint[J]. Chinese Journal of Solid Mechanics, 2010, 31(6):603-612. |
| [16] | CHAICHAOWARAT R, KINUGAWA J, KOSUGE K. Unpowered Knee Exoskeleton Reduces Quadriceps Activity during Cycling[J]. Engineering,2018,4(4),471-478. |
| [17] | WANG D, LEE K M, GUO J J, et al. Adaptive Knee Joint Exoskeleton Based on Biological Geometries[J]. IEEE/ASME Trans. Mechatron,2014, 19(4):1268-1278. |
| [18] | WOLF A. Instantaneous Screws of Weight-bearing Knee:What Can the Screws Tell Us about the Knee Motion[J]. Journal of Biomechanical Engineering, 2014, 136(7):433-440. |
| [19] | CHEN J T, YANG L F, WANG Y X, et al. The New Simulated Knee Prosthesis of Discontinuity Instantaneous Center Curve[J]. Machinery Design & Manufacture,2014,281:183-185. |
| [20] | CHOI B, LEE Y, KIM J, et al. A Self-aligning Knee Joint for Walking Assistance Devices[C]∥ In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, 2016:2222-2227. |
| [21] | ZHANG L, LIU G, HAN B,et al. Assistive Devices of Human Knee Joint:a Review[J]. Robotics and Autonomous Systems, 2020, 125:103394. |
| [1] | 高子乔, 董九志, 陈云军, 蒋秀明, . 单边双针双线摆动缝合轨迹设计及实验验证[J]. 中国机械工程, 2024, 35(01): 102-108. |
| [2] | 朱玉龙, 赵迎松, 方阳, 陈洪恩, 陈振茂, . 孔边裂纹的旋转涡流检测[J]. 中国机械工程, 2023, 34(08): 883-891. |
| [3] | 郑红梅, 郑明睿, 陈科, 史洪扬, 殷磊, . 整体双层盘式永磁涡流联轴器及其转矩特性分析[J]. 中国机械工程, 2021, 32(20): 2395-2402. |
| [4] | 陈洪月, 张坤, 袁智, 毛君, . 基于阻力测试的采煤机结构受力分析[J]. 中国机械工程, 2016, 27(19): 2646-2651. |
| [5] | 赵红;张铁柱;张洪信;张纪鹏;. 液压约束活塞发动机配流系统的多目标优化研究[J]. J4, 2008, 19(12): 0-1511. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||