中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2292-2299.DOI: 10.3969/j.issn.1004-132X.2025.10.016
• 机械基础工程 • 上一篇
王星宇1(
), 郭岩宝1(
), 张政1, 乔张宇1, 高发1, 陈金忠2, 刘畅2
收稿日期:2024-10-09
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
郭岩宝
作者简介:王星宇,男,1997年生,博士研究生。研究方向为管道内检测器关键部件失效及补强机理。E-mail:w1786037396@163.com基金资助:
Xingyu WANG1(
), Yanbao GUO1(
), Zheng ZHANG1, Zhangyu QIAO1, Fa GAO1, Jinzhong CHEN2, Chang LIU2
Received:2024-10-09
Online:2025-10-25
Published:2025-11-05
Contact:
Yanbao GUO
摘要:
管道内检测器在经过管道缺陷时会加剧其密封盘的振动和疲劳损伤,影响检测可靠性并引发检测安全事故。借助ABAQUS软件研究了密封盘在管道内缺陷处的界面接触振动特性,重点探讨了接触振动的行为演化、衰减函数、疲劳脆弱点位置与疲劳寿命之间的内在联系。研究结果表明,密封盘经过管道缺陷时的振动过程包含碰撞、变形、近弹性和弹性4个阶段,其中弹性振动的动应力幅度呈指数衰减规律;总振动次数随管道缺陷深度和摩擦因数的增大而增大,且与疲劳寿命紧密相关;疲劳脆弱点集中在接触点和夹板边缘位置,与实际工况相符,验证了研究的准确性和可行性。
中图分类号:
王星宇, 郭岩宝, 张政, 乔张宇, 高发, 陈金忠, 刘畅. 管道内缺陷影响下的内检测器密封盘振动疲劳研究[J]. 中国机械工程, 2025, 36(10): 2292-2299.
Xingyu WANG, Yanbao GUO, Zheng ZHANG, Zhangyu QIAO, Fa GAO, Jinzhong CHEN, Chang LIU. Research on Vibration Fatigue of Pipeline Inspection Gauge Sealing Discs under Influences of Pipeline Defects[J]. China Mechanical Engineering, 2025, 36(10): 2292-2299.
| 部件 | 单元类型 | 单元数量 | 节点数量 |
|---|---|---|---|
| 夹板 | CAX4H;CAX3 | 509 | 553 |
| 直板 | CAX4H | 1124 | 1214 |
| 皮碗 | CAX4H | 780 | 848 |
| 管道 | CAX4H;CAX3 | 3669 | 3807 |
表1 仿真部件单元类型及节点数量
Tab.1 Element types and node numbers of simulation components
| 部件 | 单元类型 | 单元数量 | 节点数量 |
|---|---|---|---|
| 夹板 | CAX4H;CAX3 | 509 | 553 |
| 直板 | CAX4H | 1124 | 1214 |
| 皮碗 | CAX4H | 780 | 848 |
| 管道 | CAX4H;CAX3 | 3669 | 3807 |
| 材料 | 密度/(kg·m-3) | 弹性模量 /GPa | 泊松比 |
|---|---|---|---|
| 热塑性聚氨酯 | 1200 | ||
| 管道钢/夹板 | 7900 | 198.5 | 0.48 |
表2 力学性能参数
Tab.2 Material performance parameters
| 材料 | 密度/(kg·m-3) | 弹性模量 /GPa | 泊松比 |
|---|---|---|---|
| 热塑性聚氨酯 | 1200 | ||
| 管道钢/夹板 | 7900 | 198.5 | 0.48 |
| 参数 | μ1 | μ2 | μ3 | α1 | α2 | α3 | D1 | D2 | D3 |
|---|---|---|---|---|---|---|---|---|---|
| 值 | 36.27 | 8.58 | 0.08 | 8.04 | 0 | 0 | 0 |
表3 Ogden超弹性本构模型参数
Tab.3 Parameters of the Ogden hyperelastic constitutive Model
| 参数 | μ1 | μ2 | μ3 | α1 | α2 | α3 | D1 | D2 | D3 |
|---|---|---|---|---|---|---|---|---|---|
| 值 | 36.27 | 8.58 | 0.08 | 8.04 | 0 | 0 | 0 |
图4 直板在 μ =0.4、h=3.5 mm条件下经过管道缺陷时的接触压力振动拆解及拟合
Fig.4 Contact pressure vibration decomposition and fitting of the flat plate passing through pipeline defects under μ =4, h=3.5 mm conditions
图5 直板在 μ =4、h=3.5 mm条件下经过管道缺陷时的振动行为演化过程
Fig.5 Evolution of vibration behavior for the flat plate passing through pipeline defects under μ =4, h=3.5 mm conditions
管道 缺陷 深度 h /mm | a | b | k | w | c | 拟合 优度R2 | 峰 谷 数 |
|---|---|---|---|---|---|---|---|
| 3.5 | 21.1 | 13.3 | 0 | 1.1769 | 0.639 | 15 | |
| 3.0 | 19.0 | 13.1 | 1.1222 | 0.776 | 8 | ||
| 2.5 | 19.1 | 13.2 | 1.2876 | 0.849 | 7 |
表4 直板经过不同管道缺陷深度的弹性拟合参数
Tab.4 Elastic fitting parameters of the flat plate traversing pipeline defects with varying depths
管道 缺陷 深度 h /mm | a | b | k | w | c | 拟合 优度R2 | 峰 谷 数 |
|---|---|---|---|---|---|---|---|
| 3.5 | 21.1 | 13.3 | 0 | 1.1769 | 0.639 | 15 | |
| 3.0 | 19.0 | 13.1 | 1.1222 | 0.776 | 8 | ||
| 2.5 | 19.1 | 13.2 | 1.2876 | 0.849 | 7 |
| [1] | MOHD Z A B, MOHD F M Y, SHEIKH A Z B S S, et al. Modeling of the In-pipe Inspection Robot:a Comprehensive Review[J]. Ocean Engineering, 2020, 203:107206. |
| [2] | 林俊明, 张开良, 林发炳, 等. 长输油气管道的无损检测 [J]. 无损检测, 2019, 41(9):44-47. |
| LIN Junming, ZHANG Kailiang, LIN Fabing, et al. Nondestructive Testing of Long-distance Oil and Gas Pipelines [J]. Nondestructive Testing, 2019, 41(9):44-47. | |
| [3] | 曹学文, 曹恒广, 赵湘阳, 等. 直板清管器与管壁间摩擦阻力的模拟研究[J]. 石油机械, 2021, 49(5):138-46. |
| CAO Xuewen, CAO Hengguang, ZHAO Xiangyang, et al. Simulation Study on the Friction Resistance between Straight Plate PIG and Pipeline Wall[J]. Petroleum Machinery, 2021, 49(5):138-146. | |
| [4] | 赵海旭, 樊建春. 皮碗式海洋管道内检测器通过性分析 [J]. 石油机械, 2021, 49(3):78-83. |
| ZHAO Haixu, FAN Jianchun. Passability Analysis of Cup-type In-line Inspection Tool for Offshore Pipelines [J]. Petroleum Machinery, 2021, 49(3):78-83. | |
| [5] | LIU C, WEI Y G, CAO Y G, et al. Traveling Ability of Pipeline Inspection Gauge (PIG) in Elbow under Different Friction Coefficients by 3D FEM [J]. Journal of Natural Gas Science and Engineering, 2020, 75:103134. |
| [6] | 李华, 王珂, 王东, 等. 天然气管道清管器自激振动模型及影响规律 [J]. 油气储运, 2018, 37(10):1163-9. |
| LI Hua, WANG Ke, WANG Dong, et al. Self-excited Vibration Model and Influence Laws of Gas Pipeline PIGs [J]. Oil & Gas Storage and Transportation, 2018, 37(10):1163-1169. | |
| [7] | 任涛, 郑吉霖, 曾威, 等. 冲击载荷下含腐蚀缺陷的海底管道损伤分析 [J]. 石油机械, 2024, 52(9):67-73. |
| REN Tao, ZHENG Jilin, ZENG Wei, et al. Damage Analysis of Subsea Pipeline with Corrosion Defects under Impact Load [J]. Petroleum Machinery, 2024, 52(9):67-73. | |
| [8] | TAN G B, WANG D G, LIU S H, et al. Probing Tribological Properties of Waxy Oil in Pipeline Pigging with Fluorescence Technique[J]. Tribology International, 2014, 71:26-37. |
| [9] | 刘猛, 刘文会, 温玉芬, 等. 国内埋地长输管道应力腐蚀开裂风险现状 [J]. 腐蚀与防护, 2022, 43(5):49-55. |
| LIU Meng, LIU Wenhui, WEN Yufen, et al. Current Status of Stress Corrosion Cracking Risk in Domestic Buried Long-distance Pipelines [J]. Corrosion and Protection, 2022, 43(5):49-55. | |
| [10] | 李睿, 郑健峰, 富宽, 等. 大口径管道投产前聚氨酯测径内检测器研制与应用 [J]. 油气储运, 2020, 39(6):638-44. |
| LI Rui, ZHENG Jianfeng, FU Kuan, et al. Development and Application of Polyurethane Diameter-measuring In-line Inspection Tool for Large-diameter Pipelines before Commissioning [J]. Oil & Gas Storage and Transportation, 2020, 39(6):638-644. | |
| [11] | ZHANG H, ZHANG S M, LIU S H, et al. Measurement and Analysis of Friction and Dynamic Characteristics of PIG's Sealing Disc Passing through Girth Weld in Oil and Gas Pipeline [J]. Measurement, 2015, 64:112-122. |
| [12] | LIU C, CAO Y G, TIAN H J, et al. A Novel Method for Analyzing the Driving Force of the Bi-directional PIG Based on the Four-element Model[J]. International Journal of Pressure Vessels and Piping, 2021, 190:104314. |
| [13] | WANG X Y, GUO Y B, ZHANG Z, et al. Study on the Dynamic Evolution of Friction and Wear of Polyurethane Material for Pipeline Inspection Gauge[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2024, 238(12):1570-1582. |
| [14] | 刘超,罗传富.基于大变形疲劳理论的橡胶材料及制品疲劳寿命预测方法[J].高分子材料科学与工程,2024,40(7):103-111. |
| LIU Chao, LUO Chuanfu. Fatigue Life Prediction Method for Rubber Materials and Products Based on Large Deformation Fatigue Theory[J]. Polymer Materials Science and Engineering,2024,40(7):103-111. | |
| [15] | XU X Q, ZHOU X H, LIU Y Q. Fatigue Life Prediction of Rubber-sleeved Stud Shear Connectors under Shear Load Based on Finite Element Simulation [J]. Engineering Structures, 2021, 227:111449. |
| [16] | RIVLIN R S, THOMAS A G. Rupture of Rubber. I. Characteristic Energy for Tearing [J]. Journal of Polymer Science, 1953, 10(3):291-318. |
| [17] | LAKE G J, LINDLEY P B. The Mechanical Fatigue Limit for Rubber[J]. Journal of Applied Polymer Science, 1965, 9:1233-51. |
| [18] | LIU X N, SHANGGUAN W B, ZHAO X Z. Probabilistic Fatigue Life Prediction Model of Natural Rubber Components Based on the Expanded Sample Data[J]. International Journal of Fatigue, 2022, 163:107034. |
| [19] | FU H X, WANG Y, CHEN K, et al. A Fatigue Life Prediction Model of Flexible Spoke Non-pneumatic Tires[J]. Engineering Fracture Mechanics, 2024, 295:109795. |
| [1] | 程军圣, 袁毅, 喻镇涛, 袁辉. 考虑平均应力效应的Tovo-Benasciutti疲劳寿命预测模型[J]. 中国机械工程, 2015, 26(2): 196-199. |
| [2] | 崔泗鹏, 姚卫星, 夏天翔. 连接件振动疲劳寿命分析的名义应力法[J]. 中国机械工程, 2014, 25(18): 2519-2522. |
| [3] | 刘文光, 李俊, 严铖, 贺红林. 弹性梁损伤识别模态应变能法[J]. 中国机械工程, 2014, 25(12): 1651-1654. |
| [4] | 刘文光, 贺红林. 含裂纹板的振动疲劳裂纹扩展耦合分析[J]. 中国机械工程, 2012, 23(19): 2301-2305. |
| [5] | 高清振, 王耀华, 张晓南. 基于样本法的某型飞机救生机构振动疲劳寿命估算 [J]. 中国机械工程, 2011, 22(2): 162-165. |
| [6] | 刘文光, 陈国平. 呼吸式裂纹梁的振动疲劳裂纹扩展耦合分析 [J]. 中国机械工程, 2010, 21(23): 2798-2802. |
| [7] | 王明珠;姚卫星;孙伟;. 结构随机振动疲劳寿命估算的样本法[J]. J4, 2008, 19(8): 0-888,. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||