中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2171-2178.DOI: 10.3969/j.issn.1004-132X.2025.10.002

• 国家重点科技项目研究进展专栏 • 上一篇    

基于预筛选代理模型和直接操纵自由变形参数化的向心涡轮气动优化

王天奇1, 陈江2, 向航2(), 宋晓飞3   

  1. 1.中国航天科技集团有限公司第八研究院, 上海, 201100
    2.北京航空航天大学能源与动力工程学院, 北京, 102206
    3.中国商用飞机有限责任公司北京民用飞机技术研究中心, 北京, 102200
  • 收稿日期:2024-09-19 出版日期:2025-10-25 发布日期:2025-11-05
  • 通讯作者: 向航
  • 作者简介:王天奇,男,1999年生,助理工程师。研究方向为微型燃机叶片气动优化
    向航*(通信作者),男,1991年生,博士后研究人员。研究方向为叶轮机械气动设计与优化。E-mail:xhyyyh@buaa.edu.cn
  • 基金资助:
    国家科技重大专项(J2019-Ⅱ-0005-0025)

Aerodynamic Optimization of Radial Turbines Based on Surrogate Model of Pre-screened Strategies and DFFD Parameterization

Tianqi WANG1, Jiang CHEN2, Hang XIANG2(), Xiaofei SONG3   

  1. 1.Shanghai Academy of Spaceflight Technology,CASC,Shanghai,201100
    2.School of Energy and Power Engineering,Beihang University,Beijing,102206
    3.Commercial Aircraft Corporation of China Ltd. ,COMAC Beijing Aircraft Technology Research Institute,Beijing,102200
  • Received:2024-09-19 Online:2025-10-25 Published:2025-11-05
  • Contact: Hang XIANG

摘要:

针对向心涡轮三维复杂叶片曲面气动优化过程中存在的几何调控难、控制变量多、寻优效率低等问题,基于直接操纵自由变形方法对向心涡轮流道和叶片多维度几何实施多自由度参数化,并引入预筛选代理模型辅助差分进化算法(Pre-SADE),结合python和流程自动化批处理脚本构建了数据驱动的向心涡轮全三维气动优化平台。对某向心涡轮开展流道-静/转叶片联合优化设计,结果表明,优化后向心涡轮导叶通道内马赫数明显降低,动静叶吸力面激波损失和分离损失减小,向心涡轮设计点绝热效率和流量分别提高了1.66%和1.7%,设计转速全工况效率特性均有所提升。该方法和平台在保证气动优化效果的同时,可有效减少优化变量和样本真实评估次数,显著改善寻优效率,满足向心涡轮快速、精细化优化设计需求。

关键词: 向心涡轮, 气动优化, 直接操纵自由变形, 预筛选代理模型, 差分进化算法

Abstract:

There were some problems such as difficult geometric control, many control variables and low optimization efficiency in aerodynamic optimization of three-dimensional complex blade surfaces of radial turbines. To solve these problems, multi-degree-of-freedom parameterization of radial turbine runner and blade multidimensional geometry were implemented based on DFFD method. Then an differential evolution algorithm assisted by surrogate models of pre-screened strategies(Pre-SADE) was introduced. Finally, a data-driven three-dimensional aerodynamic optimization platform for centripetal turbines was constructed by combining python and batch script of process automation. The platform was used to carry out the joint optimization design of flow channel-static/rotating blades for the radial turbines. The results show that after optimization, the adiabatic efficiency and mass-flow of the design point of the centripetal turbines are increased by 1.66% and 1.7% respectively, which effectively reduces the shock intensity in the guide vane channel and the shock loss on the suction surfaces of the guide vane, and the efficiency characteristics of the design rotational speed are improved in all working conditions. Finally, the method and platform may ensure the aerodynamic optimization efficiency, and effectively reduce the optimization variables and sample real evaluation times, significantly improve the optimization efficiency, and meet the rapid and elaborate optimization design requirements of radial turbines.

Key words: radial turbine, aerodynamic optimization, directly manipulated free-form deformation(DFFD), surrogate model of pre-screened strategy, differential evolution algorithm

中图分类号: