[1]付佳俊, 刘超, 宋昕蓉, 等. 激光仿生制备超疏水碳化硅表面及功能化特性研究[J]. 中国激光, 2024, 51(20):2002204.
FU Jiajun, LIU Chao, SONG Xinrong, et al. Laser Bionic Fabrication of Superhydrophobic Silicon Carbide Surface and Investigation of Functional Properties[J]. Chinese Journal of Lasers, 2024, 51(20):2002204.
[2]TANG Mingkai, HUANG Xingjiu, YU Jingui, et al. The Effect of Textured Surfaces with Different Roughness Structures on the Tribological Properties of Al Alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(10):4115-4125.
[3]牛赢, 王壮飞, 焦锋, 等. 表面微结构对材料性能影响的研究现状与展望[J]. 现代制造工程, 2023(1):146-153.
NIU Ying, WANG Zhuangfei, JIAO Feng, et al. Research Status and Prospect of the Effect of Surface Microstructure on Material Properties[J]. Modern Manufacturing Engineering, 2023(1):146-153.
[4]倪家伟, 曹自洋, 潘杰, 等. 镍钛合金表面微纳结构构建及其疏水性能研究[J]. 机床与液压, 2024, 52(4):44-49.
NI Jiawei, CAO Ziyang, PAN Jie, et al. Study on Construction of Micro-nano Structure and Hydrophobicity of Ni-ti Alloy Surface[J]. Machine Tool & Hydraulics, 2024, 52(4):44-49.
[5]李文轩, 段海涛, 李国政, 等. 激光表面织构技术调控材料摩擦学性能的研究进展[J]. 表面技术, 2024, 53(9):85-101.
LI Wenxuan, DUAN Haitao, LI Guozheng, et al. Research Progress in Controlling Material Tribological Properties by Laser Surface Texture Technology[J]. Surface Technology, 2024, 53(9):85-101.
[6]李杰, 王宇科, 石文天, 等. 激光构建超疏水表面的研究进展[J]. 化工进展, 2025, 44(3):1432-1444.
LI Jie, WANG Yuke, SHI Wentian, et al. Research Progress in Constructing Superhydrophobic Surfaces by Laser Processing[J]. Chemical Industry and Engineering Progress, 2025, 44(3):1432-1444.
[7]张茂, 易川云, 杨化雨, 等. 激光纹理化调控材料表面疏水性能研究进展[J]. 精密成形工程, 2023, 15(4):153-163.
ZHANG Mao, YI Chuanyun, YANG Huayu, et al. Research Progress on Hydrophobicity of Material Surfaces Regulated by Laser Texturing[J]. Journal of Netshape Forming Engineering, 2023, 15(4):153-163.
[8]陶海岩. 飞秒激光固体材料表面微纳结构制备及其功能特性的研究[D]. 长春:长春理工大学, 2014.
TAO Haiyan. Fabrication and Properties Researches of Femtosecond Laser Induced Micro/Nano Structures on Solid Surface[D]. Changchun:Changchun University of Science and Technology, 2014.
[9]SONG Juanjuan, WANG Deren, HU Leyong, et al. Superhydrophobic Surface Fabricated by Nanosecond Laser and Perhydropolysilazane[J]. Applied Surface Science, 2018, 455:771-779.
[10]DONG Jialin, LIU Yang, PACELLA M. Surface Texturing and Wettability Modification by Nanosecond Pulse Laser Ablation of Stainless Steels[J]. Coatings, 2024, 14(4):467.
[11]CUI Xiaobin, JIAO Yunxiu, GUO Jingxia, et al. Reconciliation and Performance of Dual-bionic Microstructure on Tool Surface[J]. International Journal of Mechanical Sciences, 2024, 282:109616.
[12]李田. 金属表面皮秒激光纹理刻蚀工艺及润湿性能研究[D]. 武汉:华中科技大学, 2017.
LI Tian. A Study on Process Technology and Surface Wettability of Picosecond Laser Texturing Metal[D]. Wuhan:Huazhong University of Science and Technology, 2017.
[13]WANG Rong, BAI Shaoxian. Influence of Laser Geometric Morphology Type on SiC Surface Wettability[J]. Science China Technological Sciences, 2016, 59(4):592-596.
[14]占彦龙, 李文, 李宏, 等. 激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面[J]. 高分子材料科学与工程, 2018, 34(4):147-151.
ZHAN Yanlong, LI Wen, LI Hong, et al. Fabrication of Polytetrafluoroethylene Superhydrophobic Surface with Controllable Wettability by Laser Micromaching Technology[J]. Polymer Materials Science & Engineering, 2018, 34(4):147-151.
[15]孙集一. 纳秒激光加工铝基超疏水表面制备及性能研究[D]. 哈尔滨:哈尔滨商业大学, 2024.
SUN Jiyi. Preparation and Properties of Superhydrophobic Surface of Aluminum Processed by Nanosecond Laser[D]. Harbin:Harbin University of Commerce, 2024.
[16]HOU Shuangshuang, HOU Yanyan, XIONG Pingxin, et al. Formation of Long- and Short-periodic Nanoripples on Stainless Steel Irradiated by Femtosecond Laser Pulses[J]. Journal of Physics D:Applied Physics,2011,44:50-54.
[17]AKIR F H. Enhancing the Adhesive Bonding Strength of Ti6Al4V Sheets with Fiber Laser Texturing[J]. International Journal of Adhesion and Adhesives, 2022, 114:103117.
[18]翟帅杰. 表面织构液相辅助激光制备及摩擦性能研究[D]. 新乡:河南科技学院, 2023.
ZHAI Shuaijie. Study on Liquid-phase Assisted Laser Preparation and Friction Properties of Surface Texture[D]. Xinxiang:Henan Institute of Science and Technology, 2023.
[19]POU P, del VAL J, RIVEIRO A, et al. Laser Texturing of Stainless Steel under Different Processing Atmospheres:from Superhydrophilic to Superhydrophobic Surfaces[J]. Applied Surface Science, 2019, 475:896-905.
[20]杨丁槐. 微沟槽特性对不锈钢织构化表面摩擦特性影响研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
YANG Dinghuai. Investigation of the Influence of Microgroove Property on Tribological Property of Stainless Steel Textured Surface[D]. Harbin:Harbin Institute of Technology, 2019.
[21]郑博源, 底月兰, 王海斗, 等. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23):23109-23120.
ZHENG Boyuan, DI Yuelan, WANG Haidou, et al. Research Progress in Preparation of Super-hydrophobic Surface of Metal Matrix by Laser Processing[J]. Materials Reports, 2020, 34(23):23109-23120
[22]陈彤. 人工髋关节表面微凹槽润湿性与减摩性研究[D]. 天津:天津理工大学, 2023.
CHEN Tong. Wettability and Anti-friction of Micro-grooves on the Surface of Artificial Hip Joint[D]. Tianjin:Tianjin University of Technology, 2023.
[23]ZHAO Wen, ZHANG Jing, YU Zhou, et al. Effects of Bioinspired Leaf Vein Structure on Biological Properties of UV Laser Patterned Titanium Alloy[J]. Surfaces and Interfaces, 2023, 38:102785.
[24]刘克, 刘子源, 陶海岩, 等. 飞秒激光制备可调控铝合金表面微沟槽结构研究[J]. 长春理工大学学报(自然科学版), 2022, 45(3):6-13.
LIU Ke, LIU Ziyuan, TAO Haiyan, et al. Research on Femtosecond Laser Fabrication of Adjustable Micro-groove Structure on Aluminum Alloy Surface[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2022, 45(3):6-13.
[25]王广安, 章玉珠, 倪晓武, 等. 离焦量对空气中纳秒激光打孔效率的影响[J]. 中国激光, 2007, 34(12):1621-1624.
WANG Guangan, ZHANG Yuzhu, NI Xiaowu, LU Jian, et al. Effect of Deviation Distance to Focal Spot on Nanosecond-pulsed-laser Drilling Rates in Air[J]. Chinese Journal of Lasers, 2007, 34(12):1621-1624.
[26]谢明锋, 吴勇华, 闫永君, 等. 激光参数对陶瓷微孔加工质量的影响[J]. 现代制造工程, 2023(6):78-84.
XIE Mingfeng, WU Yonghua, YAN Yongjun, et al. The Influence of Picosecond Laser Processing Parameters on the Quality of Micropore Punching on Alumina Ceramic[J]. Modern Manufacturing Engineering, 2023(6):78-84.
[27]郭杨. 激光诱导微射流辅助烧蚀制备单晶碳化硅微结构研究[D]. 哈尔滨:哈尔滨工业大学, 2023.
GUO Yang. Research of Laser Induced Microjet Assisted Ablation for Microstructure Fabrication on single Crystal Silicon Carbide[D]. Harbin:Harbin Institute of Technology, 2023.
[28]汪帮富, 张永康, 王中旺, 等. 飞秒激光制备PMMA表面微结构的作用机理和润湿性研究[J]. 激光与红外, 2020, 50(9):1057-1064.
WANG Bangfu, ZHANG Yongkang, WANG Zhongwang, et al. Study on the Mechanism and Wettability of PMMA Surface Microstructure Prepared by Femtosecond Laser[J]. Laser & Infrared, 2020, 50(9):1057-1064.
[29]肖蒲庐, 陈观华, 陈宇, 等. 飞秒激光织构钛合金表面形貌及润湿性研究[J]. 中国激光, 2023, 50(16):1602208.
XIAO Pulu, CHEN Guanhua, CHEN Yu, et al. Morphology and Wettability of Titanium Alloy Surface Textured by Femtosecond Laser[J]. Chinese Journal of Lasers, 2023, 50(16):1602208.
[30]何婉盈, 姚鹏, 褚东凯, 等. 钛表面微凹凸织构的激光加工及其细胞黏附研究[J]. 中国激光, 2022, 49(10):1002605.
HE Wanying, YAO Peng, CHU Dongkai, et al. Fabrication and Cell-adhesion Evaluation of Laser-Ablated Microprotrusion or Microgroove on Titanium[J]. Chinese Journal of Lasers, 2022, 49(10):1002605.
[31]王鹏飞. 模具表面微织构的激光加工及其摩擦磨损性能研究[D]. 济南:山东大学, 2023.
WANG Pengfei. Friction and Wear Properties of Laser Processed Micro-textured Die Surfaces[D]. Jinan:Shandong University, 2023.
[32]BRANDON S, HAIMOVICH N, YEGER E, et al. Partial Wetting of Chemically Patterned Surfaces:the Effect of Drop Size[J]. Journal of Colloid and Interface Science, 2003, 263(1):237-243.
[33]李元可, 魏昕, 汪永超, 等. 皮秒激光加工工艺对微沟槽表面的疏水性研究[J]. 激光技术, 2022, 46(3):301-306.
LI Yuanke, WEI Xin, WANG Yongchao, et al. Study on Hydrophobicity of Micro-groove Surface by Picosecond Laser Processing[J]. Laser Technology, 2022, 46(3):301-306.
[34]郭永刚, 吴云飞, 朱东坡, 等. 织构几何参数对超疏水钛合金表面润湿性的影响[J]. 表面技术, 2024, 53(22):180-190.
GUO Yonggang, WU Yunfei, ZHU Dongpo, et al. Effect of Texture Geometric Parameters on Wettability of Superhydrophobic Titanium Alloy Surface[J]. Surface Technology, 2024, 53(22):180-190.
[35]曹祥康, 孙晓光, 蔡光义, 等. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9):1525-1537.
CAO Xiangkang, SUN Xiaoguang, CAI Guangyi, et al. Durable Superhydrophobic Surfaces:Theoretical Models, Preparation Strategies, and Evaluation Methods[J]. Progress in Chemistry, 2021, 33(9):1525-1537.
|