中国机械工程 ›› 2025, Vol. 36 ›› Issue (04): 770-779.DOI: 10.3969/j.issn.1004-132X.2025.04.014

• 制造表面与服役演化 • 上一篇    下一篇

锥度球头刀四轴铣削TC4残余应力梯度分布反解

周金华1,2*;齐琪1,2;任军学1,2;詹梅1,2   

  1. 1.西北工业大学航空发动机高性能制造工业和信息化部重点实验室,西安,710072
    2.西北工业大学航空发动机先进制造技术教育部工程研究中心,西安,710072
  • 出版日期:2025-04-25 发布日期:2025-05-22
  • 作者简介:周金华*,男,1984年生,副研究员。研究方向为薄壁结构切削残余应力及变形控制理论与方法。E-mail:zhoujinhua@mail.nwpu.edu.cn。
  • 基金资助:
    航空发动机及燃气轮机基础科学中心重点项目(P2022-B-Ⅳ-012-001);国家自然科学基金(52475488,52075451);国家重点研发计划(2022YFB3709100);陕西省自然科学基础研究计划(2024JC-YBMS-288)

Inverse Solution for TC4 Residual Stress Gradient Distribution in Four-axis Milling with Tapered Ball-end Cutters

ZHOU Jinhua1,2*;QI Qi1,2;REN Junxue1,2;ZHAN Mei1,2   

  1. 1.Key Laboratory of High Performance Manufacturing for Aero Engine,Ministry of Industry and
    Information Technology,Northwestern Polytechnical University,Xian,710072
    2.Engineering Research Center of Advanced Manufacturing Technology for Aero Engine,
    Ministry of Education,Northwestern Polytechnical University,Xian,710072

  • Online:2025-04-25 Published:2025-05-22

摘要: 商用航空发动机大型复合材料风扇叶片前缘金属加强边的内外型面精加工采用定制化锥度球头刀四轴铣削方式完成,该阶段引入的加工残余应力常常引起过大的弯扭变形而导致零件尺寸超差。针对锥度球头刀四轴铣削钛合金TC4,提出了一种基于薄板加工变形测试的铣削残余应力梯度分布逆向辨识方法。采用双曲正切模型对铣削残余应力梯度分布进行参数化表征,将残余应力梯度分布的求解转换为对两个待定系数k和ω的反解,通过测试钛合金试块加工表面的残余应力计算确定模型系数k,通过测试钛合金薄板铣削弯曲变形挠度反解出模型系数ω,以此确定残余应力梯度分布曲线。开展了4组钛合金TC4试块铣削验证实验,测试结果表明,铣削残余应力梯度分布的平均预测准确率高达99.35%。与传统X射线测试法相比,所提出的方法避免了采用电解腐蚀剥层来测试亚表层残余应力,同时也充分考虑了铣削加工残余应力在已加工表面的分布不均匀性问题,即铣削加工残余应力离散度问题。

关键词: 锥度球头刀, 钛合金TC4, 四轴铣削, 残余应力, 逆向辨识, 离散度

Abstract: The internal and external profile finishing of the metal reinforcing edges of the leading edge of large composite fan blades for commercial aero-engines was accomplished by four-axis milling with a customized taper ball-end cutter, and the machining residual stresses introduced at this stage often caused excessive bending and torsional deformations leading to dimensional overshoots of the parts. For the four-axis milling of titanium alloy TC4 with taper ball-end cutter, an inverse identification method of milling residual stress gradient distribution was proposed based on the deformation tests of thin plate machining herein. The hyperbolic tangent models were used to parametrically characterize the milling residual stress gradient distribution, and the solution of the residual stress gradient distribution was converted into the inverse solution of two pending coefficients k and ω. The model coefficient k was determined by testing the residual stress on the machined surfaces of the titanium alloy specimen blocks, and the model coefficient ω was inversely solved by testing the bending deformation deflection of milled titanium alloy thin plates, then the residual stress gradient distribution curve was determined. Four groups of titanium alloy TC4 test block milling validation experiments were carried out, and the test results show that the average prediction accuracy of the milling residual stress gradient distribution is as high as 99.35%. Compared with the traditional X-ray test method, the proposed method avoids the use of electrolytic corrosion stripping to test the subsurface residual stresses, and also takes into full consideration the non-uniformity of the distribution of milling residual stresses on the machined surfaces, namely the problem of the dispersion of milling residual stresses.

Key words: tapered ball-end cutter, titanium alloy TC4, four-axis milling, residual stress, reverse identification, dispersion

中图分类号: