中国机械工程 ›› 2025, Vol. 36 ›› Issue (04): 636-645.DOI: 10.3969/j.issn.1004-132X.2025.04.001
范滔1,2;姚倡锋1,2*;谭靓1,2
出版日期:
2025-04-25
发布日期:
2025-05-20
作者简介:
范滔,男,1996年生,博士研究生。研究方向为多能场辅助加工γ-TiAl合金。E-mail:ft@mail.nwpu.edu.cn。
基金资助:
FAN Tao1,2;YAO Changfeng1,2*;TAN Liang1,2
Online:
2025-04-25
Published:
2025-05-20
摘要: γ-TiAl合金密度小、比强度高,具有优异的高温抗氧化性能,在航空航天领域有着广泛的应用潜力,然而,由于其高脆性和低室温塑性,被认为是典型的难加工材料,加工过程中存在高切削力、快速刀具磨损和表面缺陷等挑战。近年来,能场辅助加工技术为解决这些问题提供了新的思路。系统分析了γ-TiAl合金的材料特性、加工特性及表面完整性,并重点探讨了能场辅助加工技术的研究进展,包括在减小切削力、延长刀具寿命及提升表面质量中的应用效果。同时梳理了当前研究的局限性,并提出了未来发展趋势,以期为γ-TiAl合金的高效加工提供理论与技术参考。
中图分类号:
范滔1, 2, 姚倡锋1, 2, 谭靓1, 2. γ-TiAl合金的加工特性及能场辅助技术研究进展[J]. 中国机械工程, 2025, 36(04): 636-645.
FAN Tao1, 2, YAO Changfeng1, 2, TAN Liang1, 2. Research Progresses for Machining Characteristics and Field-assisted Techniques of γ-TiAl Alloys[J]. China Mechanical Engineering, 2025, 36(04): 636-645.
[1]宫声凯, 尚勇, 张继, 等. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9):1067-1076. GONG Shengkai, SHANG Yong, ZHANG Ji, et al. Application and Research of Typical Intermetallics-based High Temperature Structural Materials in China[J]. Acta Metallurgica Sinica, 2019, 55(9):1067-1076. [2]LIANG Zhenquan, XIAO Shulong, LI Xinyi, et al. Significant Improvement in Creep Resistance of Ti-46Al-6Nb-1Cr-1.5V Alloy via Introducing High-density Nanotwins[J]. Materials Science and Engineering:A, 2023, 862:144485. [3]蔡建明,弭光宝,高帆,等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8):1-10. CAI Jianming, MI Guangbao, GAO Fan, et al. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine[J]. Journal of Materials Engineering, 2016, 44(8):1-10. [4]XIA Ziwen, SHAN Chenwei, Meng Hua, et al. Machinability of γ-TiAl:a Review[J]. Chinese Journal of Aeronautics, 2023,36(7):40-75. [5]黄锋, 梁思诚, 胡尚兴,等. TiAl合金强韧化研究现状与进展[J]. 特种铸造及有色合金, 2023, 43(11):1441-1446. HUANG Feng, LIANG Sicheng, HU Shangxing, et al. Status and Progress in Strengthening and Toughening of TiAl Alloy[J]. Special Casting & Nonferrous Alloys, 2023, 43(11):1441-1446. [6]廖阳稷敛, 顾琳, 刘苏毅,等. γ-TiAl金属间化合物加工的国内外研究现状[J]. 航空制造技术, 2020, 63(4):22-33. LIAO Yangjilian, GU Lin, LIU Suyi, et al. Research Status of Machining γ-TiAl Intermetallic Compounds Both in China and Overseas[J]. Aeronautical Manufacturing Technology, 2020, 63(4):22-33. [7]高万里, 温家亮, 王春晓. 新型钛铝合金数控切削加工表面完整性及耐腐蚀性研究[J]. 中国金属通报, 2023 (4):100-102. GAO Wangli, WENG Jialiang, WANG Chunxiao. Study of Surface Integrity and Corrosion Resistance in CNC Machining of New TiAl Alloys[J]. Science and Technology, 2023 (4):100-102. [8]左俊彦, 林有希, 孟鑫鑫. 难加工材料的高速铣削研究进展[J]. 精密成形工程, 2017, 9(4):121-125. ZUO Junyan, LIN Youxi, MENG Xinxin, et al. Research Progress of HSM in Difficult-machining-metal-material[J]. Journal of Netshape Forming Engineering, 2017, 9(4):121-125. [9]赵鑫. 超临界CO2-MQL铣削γ-TiAl合金表面完整性研究[D]. 哈尔滨:哈尔滨理工大学, 2023 ZHAO Xin. Supercritical CO2-MQI Milling of γ-TiAl Alloys Surfaceintegrity Study[D]. Harbin :Harbin University of Science and Technology, 2023. [10]王相宇, 仇文豪, 牛金涛,等. 钛铝合金低温切削加工温度的实验和仿真研究[J]. 机械工程学报, 2024, 60(19):318-331. WANG Xiangyu, QIU Wenhao, NIU Jintao, et al. Simulation and Experimental Study on Temperature in Cryogenic Cutting of Titanium Aluminum Alloy[J]. Journal of Mechanical Engineering, 2024, 60(19):318-331. [11]许剑锋, 黄凯, 郑正鼎,等. 难加工材料场辅助超精密加工研究[J]. 中国科学:技术科学, 2022, 52(6):829-853. XU Jianfeng, HUANG Kai, ZHENG Zhengding, et al. Review of Field-assisted Ultraprecision Machining Difficult-to-machine Materials[J]. Scientia Sinica(Technologica), 2022, 52(6):829-853. [12]HOJATI F, AZARHOUSHANG B, DANESHI A, et al. Modeling of Laser-assisted Micro-milling[J]. CIRP Journal of Manufacturing Science and Technology, 2023, 40:29-43. [13]赵重阳, 陆俊宇, 王晓博,等. 超声纵扭辅助铣削高强铝合金表面润湿性能研究[J]. 中国机械工程, 2022, 33(16):1912-1918. ZHAO Chongyang, LU Junyu, WANG Xiaobo, et al. Wettability of High-performance Aluminum Alloy Surfaces Machined Longitudinal-torsion Ultrasonic-assisted Milling[J]. China Mechanical Engineering, 2022, 33(16):1912-1918. [14]杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2):129-147. YANG Rui, Chinese Academy of Sciences Institute of Metal Research[J]. Acta Metallurgica Sinica, 2015, 51(2):129-147. [15]胡志力, 张嘉恒, 华林. TiAl合金热成形技术研究现状与展望[J]. 材料工程, 2025,53(4):1-14. HU Zhili, ZHANG Jiaheng, HUA Lin. Research Progress and Prospect in Hot Forming Techniques of TiAl Alloys[J]. Journal of Materials Engineering,2025,53(4):1-14. [16]BEWLAY B P, NAG S, SUZUKI A, et al. TiAl Alloys in Commercial Aircraft Engines[J]. Materials at High Temperatures, 2016, 33(4/5):549-559. [17]朱春雷, 李胜, 张继. 有利于铸造TiAl合金增压器涡轮叶片可靠性的组织设计[J]. 材料工程, 2017, 45(6):36-42. ZHU Chunlei, LI Sheng, ZHANG Ji, et al. Microstructure Design for Reliability of Turbocharger Blade of Cast TiAl Based Alloy[J]. Journal of Materials Engineering, 2017, 45(6):36-42. [18]MAYER S, ERDELY P, FISCHER F D, et al. Intermetallic β-solidifying γ-TiAl Based Alloys-from Fundamental Research to Application[J]. Advanced Engineering Materials, 2017, 19(4):1600735. [19]油如月, 王强, 赵春玲,等. TNM变形钛铝合金研究进展[J]. 中国材料进展, 2023, 42(8):669-680. YOU Ruyue, WANG Qiang, ZHAO Chunling, et al. Progress of TNM Deformed TiAl Alloys[J]. Materials China, 2023, 42(8):669-680. [20]CHEN Guang, PENG Yingbo, ZHENG Gong, et al. Polysynthetic Twinned TiAl Single Crystals for High-temperature Applications[J]. Nature Materials, 2016, 15:876-881. [21]JANSCHEK P. Wrought TiAl Blades[J]. Materials Today:Proceedings, 2015, 2:S92-S97. [22]WU Xinhua. Review of Alloy and Process Development of TiAl Alloys[J]. Intermetallics, 2006, 14:1114-1122. [23]SCHUSTER J C, PALM M. Reassessment of the Binary Aluminum-titanium Phase Diagram[J]. Journal of Phase Equilibria and Diffusion, 2006, 27:255-277. [24]王子特, 郑功, 祁志祥, 等. TiAl合金结构、组织、性能与应用[J]. 科学通报, 2023, 68(25):3259-3274. WANG Zite, ZHENG Gong, QI Zhixiang, et al. Structures, Microstructures, Properties, and Applications of TiAl Alloys[J]. Chinese Science Bulletin, 2023, 68(25):3259-3274. [25]强凤鸣, 寇宏超, 贾梦宇,等. β型γ-TiAl合金热变形过程中组织演化及动态再结晶行为研究现状[J]. 精密成形工程, 2022, 14(1):11-18. QIANG Fengming, KOU Hongchao, JIA Mengyu, et al. Microstructure Evolution and Dynamic Recrystallization Behavior in β-Solidifying γ-TiAl during Thermomechanical Processing[J]. Journal of Netshape Forming Engineering, 2022, 14(1):11-18. [26]刘宏武. (γ+α2+B2)三相TiAl合金热加工特性及组织性能研究[D]. 秦皇岛:燕山大学, 2017. LIU Hongwu. Hot Working, Structure and Properties of (γ+α2+B2) Multiphase TiAl Alloy[D].Qinhuangdao: Yanshan University, 2017 [27]CLEMENS H, MAYER S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys[J]. Advanced Engineering Materials, 2013, 15(4):191-215. [28]XU Runrun, LI Miaoquan, ZHAO Yonghao. A Review of Microstructure Control and Mechanical Performance Optimization of γ-TiAl Alloys[J]. Journal of Alloys and Compounds, 2023, 932:167611. [29]KLOCKE F, LUNG D, ARFT M, et al. On High-speed Turning of a Third-generation Gamma Titanium Aluminide[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65:155-163. [30]PREZ R G V. Wear Mechanisms of WC Inserts in Face Milling of Gamma Titanium Aluminides[J]. Wear, 2005, 259(7/12):1160-1167. [31]ASPINWALL D K, DEWES R C, MANTLE A L. The Machining of γ-TiAI Intermetallic Alloys[J]. CIRP Annals, 2005, 54(1):99-104. [32]GE Yingfei, FU Yucan, Xu Jiuhua. Experimental Study on High Speed Milling of γ-TiAl Alloy[J]. Key Engineering Materials, 2007, 339:6-10. [33]潘多. γ-TiAl合金低温冷却切削加工材料去除机理研究[D]. 济南:济南大学, 2022 PAN Duo. Removal Mechanism of γ-TiAl Alloy in Cryogenic Cooling Cutting[D]. Jinan :University of Jinan, 2022. [34]ASPINWALL D K, MANTLE A L, CHAN W K, et al. Cutting Temperatures When Ball Nose End Milling γ-TiAl Intermetallic Alloys[J]. CIRP Annals, 2013, 62(1):75-78. [35]LIU Xin, LIU Hongguang, SHI Shijia, et al. On Revealing the Mechanisms Involved in Brittle-to-ductile Transition of Fracture Behaviors for γ-TiAl Alloy under Dynamic Conditions[J]. Journal of Alloys and Compounds, 2025, 1010:177614. [36]IMAYEV V M, IMAYEV R M, SALISHCHEV G A. On Two Stages of Brittle-to-ductile Transition in TiAl Intermetallic[J]. Intermetallics, 2000, 8(1):1-6. [37]UHLMANN E, HERTER S. Studies on Conventional Cutting of Intermetallic Nickel and Titanium Aluminides[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2006, 220(9):1391-1398. [38]UHLMANN E, HERTER S, GERSTENBERGER R, et al. Quasi-static Chip Formation of Intermetallic Titanium Aluminides[J]. Production Engineering, 2009, 3(3):261-270. [39]WANG Xiangyu, ZHANG Xiaoxia, PAN Duo, et al. Tool Wear and Surface Integrity of γ-TiAl Cryogenic Coolant Machining at Various Cutting Speed Levels[J]. Lubricants, 2023, 11:238. [40]YAO Changfeng, LIN Jiannan, WU Daoxia, et al. Surface Integrity and Fatigue Behavior When Turning γ-TiAl Alloy with Optimized PVD-coated Carbide Inserts[J]. Chinese Journal of Aeronautics, 2018, 31:826-836. [41]HOOD R, ASPINWALL D K, SAGE C, et al. High Speed Ball Nose End Milling of γ-TiAl Alloys[J]. Intermetallics, 2013, 32:284-291. [42]KLOCKE F, SETTINERI L, LUNG D, et al. High Performance Cutting of Gamma Titanium Aluminides:Influence of Lubricoolant Strategy on Tool Wear and Surface Integrity[J]. Wear, 2013, 302(1/2):1136-1144. [43]PRIARONE P C, KLOCKE F, FAGA M G, et al. Tool Life and Surface Integrity When Turning Titanium Aluminides with PCD Tools under Conventional Wet Cutting and Cryogenic Cooling[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85:807-816. [44]WANG Zhenhua, LIU Yaowen. Study of Surface Integrity of Milled Gamma Titanium Aluminide[J]. Journal of Manufacturing Processes, 2020, 56:806-819. [45]RAHMAN M A, RAHMAN M, KUMAR A S. Modelling of Flow Stress by Correlating the Material Grain Size and Chip Thickness in Ultra-precision Machining[J]. International Journal of Machine Tools and Manufacture, 2017, 123:57-75. [46]PENG C T, SHAREEF I. Dry Machining Parameter Optimization for γ-TiAl with a Rhombic Insert[J]. Procedia Manufacturing, 2021;53:162-73. [47]ZHANG Y, LEE Y, CHANG S, et al. Microstructural Modulation of TiAl Alloys for Controlling Ultra-precision Machinability[J]. International Journal of Machine Tools and Manufacture, 2022, 174:103851. [48]LI Junye, SUN Yuxiao, XIE Hongcai, et al. Effect of Cutting Parameters on the Depth of Subsurface Deformed Layers of Single γ-TiAl Alloy during Nano-cutting Process[J]. Applied Physics, 2022, 128:189. [49]JIANG Junqiang,DONG Zhaowei,MA Hongwei,et al. Computational Investigation on the Surface Cutting of γ-TiAl Alloy[J]. Solid State Communications, 2022, 342:114618. [50]周丽,崔超,贾清,等. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4):505-512. ZHOU Li, CUI Chao, JIA Qing,et al. Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics[J].Acta Metallurgica Sinica, 2017, 53(4):505-512. [51]YAO Jun, LI Xun, DU Baorui, et al. Research Status of Influence Mechanism of Surface Integrity on Fatigue Behavior of Metal Workpieces:a Review[J]. The International Journal of Advanced Manufacturing Technology, 2024, 131:3401-3419. [52]王麒,冯瑞成,樊礼赫,等. 切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响[J]. 材料导报, 2021, 35(14):14089-14095. WANG Qi, FENG Ruicheng, FAN Lihe, et al. Effect of Cutting Depth on Subsurface Defects and Residual Stress in Single Crystal γ-TiAl Alloy[J]. Materials Reports, 2021, 35(14):14089-14095. [53]刘耀文,汪振华,章波,等. γ-TiAl合金铣削加工表面粗糙度研究[J]. 机床与液压, 2020, 48(17):53-58. LIU Yaowen, WANG Zhenhua, ZHANG Bo, et al. Study on Surface Roughness of γ-TiAl Alloys Milling[J]. Machine Tool & Hydraulics, 2020, 48(17):53-58 [54]CHEN Tao, WANG Xiaowei, ZHAO Biao, et al. Surface Integrity Evolution during Creep Feed Profile Grinding of γ-TiAl Blade Tenon[J]. Chinese Journal of Aeronautics, 2024, 37(8):496-512. [55]刘耀文. 新型钛铝合金切削加工表面完整性研究[D]. 南京:南京理工大学, 2020 LIU Yaowen. Research on Surface Integrity of New Titanium-aluminum Alloy Machining[D]Nanjing :Nanjing University of Science and Technology, 2020. [56]MANTLE A L, ASPINWALL D K. Surface Integrity and Fatigue Life of Turned Gamma Titanium Aluminide[J]. Journal of Materials Processing Technology, 1997, 72(3):413-420. [57]PRIARONE P C, RIZZUTI S, ROTELLA G, et al. Tool Wear and Surface Quality in Milling of a Gamma-TiAl Intermetallic[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61:25-33. [58]FURUSAWA T, HINO H, TSUJI S, et al. Generation of Defects due to Machining of TiAl Intermetallic Compound and Their Effects on Mechanical Strength[J].Journal of Manufacturing Science and Engineering, 2004, 126(3):506-514. [59]LIANG Xiaoliang, LIU Zhanqiang, WANG Bing. State-of-the-art of Surface Integrity Induced by Tool Wear Effects in Machining Process of Titanium and Nickel Alloys:a Review[J]. Measurement, 2019, 132:150-181. [60]DING Wenfeng, ZHANG Liangchi, LI Zheng, et al. Review on Grinding-induced Residual Stresses in Metallic Materials[J]. The International Journal of Advanced Manufacturing Technology, 2016, 88:2939-2968. [61]MANTLE A L, ASPINWALL D K. Surface Integrity of a High Speed Milled Gamma Titanium Aluminide[J]. Journal of Materials Processing Technology, 2001, 118(1/3):143-150. [62]FAN Tao, YAO Changfeng, TAN Liang, et al. The Influence of Induction-assisted Milling on the Machining Characteristics and Surface Integrity of γ-TiAl Alloys[J]. Journal of Manufacturing Processes, 2024, 118:215-227. [63]BENTLEY S A,MANTLE A L, ASPINWALL D K. The Effect of Machining on the Fatigue Strength of a Gamma Titanium Aluminide Intertmetallic Alloy[J]. Intermetallics, 1999, 7:967-969. [64]徐伟峰,闫冉,刘维伟. γ-TiAl合金铣削加工表面残余应力研究[J]. 航空制造技术, 2017 (10):82-85. XU Weifeng, YAN Ran, LIU Weiwei, et al. Surface Residual Stress of Gamma Titanium Aluminide in Milling Process[J]. Aeronautical Manufacturing Technology, 2017(10):82-85. [65]HOOD R, ASPINWALL D K, SOO S L, et al. Workpiece Surface Integrity When Slot Milling γ-TiAl Intermetallic Alloy[J]. CIRP Annals, 2014, 63:53-56. [66]AHMAR K, WANG Xin, ZHAO Biao, et al. Ultrasonic Vibration-assisted Cutting of Titanium Alloys:a State-of-the-art Review[J]. Chinese Journal of Aeronautics, 2025, 38:103078. [67]XU Binbin, ZHANG Jun, LIU Xin, et al. Fully Coupled Thermomechanical Simulation of Laser-assisted Machining Ti6Al4V Reveals the Mechanism of Morphological Evolution during Serrated Chip Formation[J]. Journal of Materials Processing Technology, 2023, 315:117925. [68]CHEN Tao, WANG Xiaowei, ZHAO Biao, et al. Material Removal Mechanisms in Ultrasonic Vibration-assisted High-efficiency Deep Grinding γ-TiAl Alloy[J]. Chinese Journal of Aeronautics, 2024, 37(11):462-476. [69]卢跃锋, 汪振华, 马耀,等.超声铣削钛铝合金表面完整性与刀具磨损研究[J].机械设计与制造, 2023 (4):118-123. LU Yuefeng, WANG Zhenhua, MA Yao, et al. Study on the Surface Integrity and Tool Wear of TiAl Alloy Processed by Ultrasonic Vibration Assisted Milling[J]. Machinery Design & Manufacture,2023 (4):118-123. [70]卢跃锋. 超声铣削钛铝合金加工工艺与表面完整性研究[D]. 南京:南京理工大学, 2021. LU Yuefeng. Ultrasonic Milling Titanium-aluminum Alloy Processing Technology and Surface Integrity Research[D]. Nanjing:Nanjing University of Science and Technology, 2021. [71]宋阳轩,汪振华,黄雷. 超声纵扭辅助铣削TiAl合金表面质量及刀具磨损研究[J]. 制造技术与机床, 2024 (2):31-37. SONG Yangxuan, WANG Zhenhua, HUANG Lei, et al. Study on Surface Quality and Tool Wear of TiAl Alloy in Ultrasonic Longitudinal Torsion Assisted Milling[J]. Manufacturing Technology & Machine Tool, 2024(2):31-37. [72]XIA Ziwen, SHAN Chenwei, ZHANG Menghua, et al. Machinability of Elliptical Ultrasonic Vibration Milling γ-TiAl:Chip Formation, Edge Breakage, and Subsurface Layer Deformation[J]. Chinese Journal of Aeronautics, 2025,38(3):103096. [73]YOU Kaiyuan, YAN Guangpeng, LUO Xichun, et al. Advances in Laser Assisted Machining of Hard and Brittle Materials[J]. Journal of Manufacturing Processes, 2020, 58:677-692. [74]HE Yi, XIAO Guijian, LIU Zhenyang, et al. Subsurface Damage in Laser-assisted Machining Titanium Alloys[J]. International Journal of Mechanical Sciences, 2023, 258:108576. [75]刘鑫,张俊,徐斌斌,等. 激光辅助铣削过程的预热温度场调控方法研究[J]. 机械工程学报, 2024, 60(9):218-228. LIU Xin, ZHANG Jun, XU Binbin, et al. Controlling Strategy of Preheating Temperature Field in Laser-assisted Machining Process[J]. Journal of Mechanical Engineering, 2024, 60(9):218-228. [76]KALANTARI O, JAFARIAN F, FALLAH M M. Comparative Investigation of Surface Integrity in Laser Assisted and Conventional Machining of Ti-6Al-4V Alloy[J]. Journal of Manufacturing Processes, 2021, 62:90-98. [77]DARGUSCH M S, SIVARUPAN T, BERMINGHAM M, et al. Challenges in Laser-assisted Milling of Titanium Alloys[J]. International Journal of Extreme Manufacturing, 2020, 3(1):015001. [78]张迎信, 安立宝. 激光加热辅助切削加工技术研究进展[J]. 航空材料学报, 2018, 38(2):77-85. ZHANG Yinxin, AN Libao. Research Progress on Laser Assisted Machining[J]. Journal of Aeronautical Materials, 2018, 38(2):77-85. [79]CHI Yada, DONG Zexuan, CUI Minchao, et al. Comparative Study on Machinability and Surface Integrity of γ-TiAl Alloy in Laser Assisted Milling[J]. Journal of Materials Research and Technology, 2024, 33:3743-3755. [80]MIN C S,YOUNG H M. Coupled Electromagnetic and Thermal Analysis of Induction Heating for the Forging of Marine Crankshafts[J]. Applied Thermal Engineering, 2016, 98:98-109. [81]AMIN A N, HOSSAIN M I, PATWARI A U. Enhancement of Machinability of Inconel 718 in End Milling through Online Induction Heating of Workpiece[J]. Advanced Materials Research, 2011, 415/417:420-423. [82]GINTA T L, NURUL AMIN A K M. Thermally-assisted End Milling of Titanium Alloy Ti-6Al-4V Using Induction Heating[J]. International Journal of Machining and Machinability of Materials, 2013, 14:194. [83]KIM J H, KIM E J, LEE C M . A Study on the Heat Affected Zone and Machining Characteristics of Difficult-to-cut Materials in Laser and Induction Assisted Machining[J]. Journal of Manufacturing Processes, 2020, 57:499-508. [84]CHOI Y H, LEE C M. A Study on the Machining Characteristics of AISI 1045 Steel and Inconel 718 with Circular Cone Shape in Induction Assisted Machining[J]. Journal of Manufacturing Processes, 2018, 34:463-476. [85]HA J H, LEE C M . A Study on the Thermal Effect by Multi Heat Sources and Machining Characteristics of Laser and Induction Assisted Milling[J]. Materials, 2019, 12:1032. |
[1] | 何喆1, 李佳乐1, 史恺宁1, 樊昱昌3, 黄新春2. 热机载荷下GH4169G车削喷丸加工表面完整性的演化机理[J]. 中国机械工程, 2025, 36(04): 780-789. |
[2] | 王栋, 陈磊, 张志鹏. 外圆磨削18CrNiMo7-6力模型及表面完整性研究[J]. 中国机械工程, 2024, 35(03): 381-393. |
[3] | 勾睿杰, 张晓峰, 张鸿滨, 姚俊, 李勋. 刀具磨损对Allvac 718Plus高温合金铣削加工表面完整性及疲劳性能的影响[J]. 中国机械工程, 2023, 34(24): 2920-2926. |
[4] | 吴泽刚, 侯永峰, 苗清, 李靖, 张定华, 罗明, . TC11钛合金整体叶轮铣削加工表面完整性研究[J]. 中国机械工程, 2023, 34(23): 2862-2872. |
[5] | 李祥, 郑光明, 颜培, 孙作民, 程祥, 刘焕宝. 清洁切削高温合金涂层刀具切削性能及加工表面完整性[J]. 中国机械工程, 2023, 34(04): 454-463. |
[6] | 季文彬, 邓日清, 戴士杰, 刘春成. 铣削对SLM增材TC4钛合金表面完整性和疲劳性能的影响[J]. 中国机械工程, 2023, 34(02): 208-217,225. |
[7] | 吴振宇, 郑光明, 颜培, 杨先海, 赵光喜, 李学伟. 表面处理对TiAlSiN涂层刀具表面完整性及切削性能的影响研究[J]. 中国机械工程, 2023, 34(01): 75-83. |
[8] | 于良, 郑光明, 杨先海, 程祥, 常垲硕, 李学伟. 深冷处理对PCBN刀具切削性能的影响研究[J]. 中国机械工程, 2022, 33(20): 2450-2458. |
[9] | 王东峰, 袁巨龙, 王燕霜, 程勇杰, 吕冰海. 轴承沟道表面完整性研究进展[J]. 中国机械工程, 2022, 33(18): 2143-2160. |
[10] | 余建杭, 颜培, 范雷, 顾慧卿, 焦黎, 仇天阳, 王西彬. 相态对镍钛合金清洁切削性能和表面完整性的影响[J]. 中国机械工程, 2022, 33(05): 569-576. |
[11] | 罗欢, 张定华, 罗明. 航空难加工材料切削刀具磨损与剩余寿命预测研究进展[J]. 中国机械工程, 2021, 32(22): 2647-2666. |
[12] | 彭锐涛, 彭兴, 童佳威, 赵林峰, 陈美良, 贺湘波. 水基混合纳米流体对内冷却磨削性能的影响[J]. 中国机械工程, 2021, 32(13): 1591-1599. |
[13] | 彭锐涛1;吴艳萍1;唐新姿1;鲁鑫焱1;胡云波2. 流道出口位置对加压内冷却砂轮磨削性能的影响[J]. 中国机械工程, 2020, 31(04): 489-497. |
[14] | 段练1,2;黄云1,2;邹莱1,2. 机器人砂带磨削GH4169镍基高温合金表面完整性研究[J]. 中国机械工程, 2019, 30(17): 2044-2050. |
[15] | 郑建新;任元超. 7050铝合金二维超声滚压加工表面完整性综合评价[J]. 中国机械工程, 2018, 29(13): 1622-1626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||