[1]谢贤达. 基于等几何分析的移动可变形组件拓扑优化方法及应用研究[D]. 武汉:华中科技大学, 2021.
XIE Xianda. Research on Topology Optimization Method and Application of Mobile Deformable Components Based on Isogeometric Analysis[D].Wuhan:Huazhong University of Science and Technology, 2021.
[2]丁延冬, 罗年猛, 杨奥迪, 等. Bézier单元刚度映射下的高效多重网格等几何拓扑优化方法[J]. 中国机械工程, 2022, 33(23):2801-2810.
DING Yandong, LUO Nianmeng, YANG Aodi, et al. Efficient Multigrid Isogeometric Topology Optimization under Bézier Element Stiffness Mapping[J]. China Mechanical Engineering, 2022, 33(23):2801-2810.
[3]杨雨豪, 郑伟, 王英俊. 一种自由度缩减和收敛加速的高效等几何拓扑优化方法[J]. 中国机械工程, 2022, 33(23):2811-2821.
YANG Yuhao, ZHENG Wei, WANG Yingjun. An Efficient Isogeometric Topology Optimization Method Using DOF Reduction and Convergence Acceleration[J]. China Mechanical Engineering, 2022, 33(23):2811-2821.
[4]陈涛. 等几何分析方法的本质边界条件处理研究[D]. 西安:西北工业大学, 2016.
CHEN Tao. Study on the Treatment of Essential Boundary Conditions of Equal Geometry Analysis Method[D].Xian:Northwestern Polytechnical University, 2016.
[5]HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric Analysis:CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39/40/41):4135-4195.
[6]WANG Huiping, WANG Dongdong. Efficient Meshfree Computation with Fast Treatment of Essential Boundary Conditions for Industrial Applications[J]. Journal of Engineering Mechanics, 2009, 135(10):1147-1154.
[7]CHEN J S, WANG Huiping. New Boundary Condition Treatments in Meshfree Computation of Contact Problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3/4):441-468.
[8]GINGOLD R A, MONAGHAN J J. Smoothed Particle Hydrodynamics:Theory and Application to Non-spherical Stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3):375-389.
[9]WANG Lihua, HU Minghao, ZHONG Zheng, et al. Stabilized Lagrange Interpolation Collocation Method:a Meshfree Method Incorporating the Advantages of Finite Element Method[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 404:115780.
[10]LUCY L B. A Numerical Approach to the Testing of the Fission Hypothesis[J]. The Astronomical Journal, 1977, 82:1013.
[11]黄志强. 无网格法中本质边界条件实施研究[D]. 西安:西北工业大学, 2007.
HUANG Zhiqiang. Research on the Implementation of Essential Boundary Conditions in Meshless Method[D].Xian:Northwestern Polytechnical University, 2007.
[12]WANG Dongdong, XUAN Junchang. AnImproved NURBS-based Isogeometric Analysis with Enhanced Treatment of Essential Boundary Conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37/38/39/40):2425-2436.
[13]轩军厂.基于改进边界条件施加方式和应变光滑子域积分的几何精确NURBS有限元分析[D]. 厦门:厦门大学,2010.
XUAN Junchang. Geometrically Accurate NURBS Finite Element Analysis Based on Improved Boundary Condition Application and Strain-smooth Subdomain Integral[D]. Xiamen:Xiamen University,2010.
[14]陈涛, 莫蓉, 万能. 等几何分析中Dirichlet边界条件的配点施加方法[J]. 机械工程学报, 2012, 48(5):157-164.
CHEN Tao, MO Rong, WAN Neng. Imposing Dirichlet Boundary Conditions with Point Collocation Method in Isogeometric Analysis[J]. Journal of Mechanical Engineering, 2012, 48(5):157-164.
[15]王东东, 轩军厂, 张灿辉. 几何精确NURBS有限元中边界条件施加方式对精度影响的三维计算分析[J]. 计算力学学报, 2012, 29(1):31-37.
WANG Dongdong, XUAN Junchang, ZHANG Canhui. A Three Dimensional Computational Investigation on the Influence of Essential Boundary Condition Imposition in NURBS Isogeometric Finite Element Analysis[J]. Chinese Journal of Computational Mechanics, 2012, 29(1):31-37.
[16]张汉杰, 王东东, 轩军厂. 薄梁板结构NURBS几何精确有限元分析[J]. 力学季刊, 2010, 31(4):469-477.
ZHANG Hanjie, WANG Dongdong, XUAN Junchang. Non-uniform Rational B Spline-based Isogeometric Finite Element Analysis of Thin Beams and Plates[J]. Chinese Quarterly of Mechanics, 2010, 31(4):469-477.
[17]HOANG T, VERHOOSEL C V, AURICCHIO F, et al. Skeleton-stabilized Iso Geometric Analysis:High-regularity Interior-penalty Methods for Incompressible Viscous Flow Problems[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 337:324-351.
[18]LEI Zhen, GILLOT F, JEZEQUEL L.AC0/G1 Multiple Patches Connection Method in Isogeometric Analysis[J]. Applied Mathematical Modelling, 2015, 39(15):4405-4420.
[19]EMBAR A, DOLBOW J, HARARI I. Imposing Dirichlet Boundary Conditions with Nitsches Method and Spline-based Finite Elements[J]. International Journal for Numerical Methods in Engineering, 2010, 83(7):877-898.
[20]CHEN Tao, MO Rong, GONG Zhongwei. Imposing Essential Boundary Conditions in Isogeometric Analysis with Nitsches Method[J]. Applied Mechanics and Materials, 2011, 121/122/123/124/125/126:2779-2783.
[21]NGUYEN V P, KERFRIDEN P, BRINO M, et al. Nitsches Method for Two and Three Dimensional NURBS Patch Coupling[J]. Computational Mechanics, 2014, 53(6):1163-1182.
[22]HU Qingyuan, CHOULY F, HU Ping, et al. Skew-symmetric Nitsches Formulation in Isogeometric Analysis:Dirichlet and Symmetry Conditions, Patch Coupling and Frictionless Contact[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 341:188-220.
[23]DU Xiaoxiao, ZHAO Gang, WANG Wei, et al. Nitsches Method for Non-conforming Multipatch Coupling in Hyperelastic Isogeometric Analysis[J]. Computational Mechanics, 2020, 65(3):687-710.
[24]胡清元. 等几何分析中的闭锁问题与Nitsche方法研究[D]. 大连:大连理工大学, 2019.
HU Qingyuan. On the Locking Problem and the Nitsches Method in Isogeometric Analysis[D].Dalian:Dalian University of Technology, 2019.
[25]DORNISCH W, KLINKEL S. Boundary Conditions and Multi-patch Connections in Isogeometric Analysis[J]. PAMM, 2011, 11(1):207-208.
[26]TEMIZER I, WRIGGERS P, HUGHES T J R. Contact Treatment in Isogeometric Analysis with NURBS[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9/10/11/12):1100-1112.
[27]MITCHELL T J, GOVINDJEE S, TAYLOR R L. A Method for Enforcement of Dirichlet Boundary Conditions in Isogeometric Analysis[M]∥MUELLER-HOEPPE D, LOEHNERT S, REESE S. Recent Developments and Innovative Applications in Computational Mechanics. Heidelberg:Springer, 2011:283-293.
[28]JIANG Kai, ZHU Xuefeng, HU Changzhi, et al. An Enhanced Extended Isogeometric Analysis with Strong Imposition of Essential Boundary Conditions for Crack Problems Using B++ Splines[J]. Applied Mathematical Modelling, 2023, 116:393-414.
[29]王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003.
WANG Xucheng. Finite Element Method[M]. Beijing:Tsinghua University Press, 2003.
[30]黄艾香, 周天孝. 有限元理论与方法—第一分册[M]. 北京:科学出版社, 2009.
HUANG Aixiang, ZHOU Tianxiao. Finite Element Theory and Methods-Division 1[M]. Beijing:Science Press, 2009.
[31]ATLURI S N,SHEN Shengping.The Meshless Method[M]. Tech. Science Press Encino, 2002.
[32]MONTEMURRO M. On theStructural Stiffness Maximisation of Anisotropic Continua under Inhomogeneous Neumann-Dirichlet Boundary Conditions[J]. Composite Structures, 2022, 287:115289.
[33]MONTEMURRO M, RODRIGUEZ T, PAILHS J, et al. On Multi-material Topology Optimisation Problems under Inhomogeneous Neumann-Dirichlet Boundary Conditions[J]. Finite Elements in Analysis and Design, 2023, 214:103867.
[34]De PRENTER F, VERHOOSEL C V, Van BRUMMELEN E H, et al. Stability and Conditioning of Immersed Finite Element Methods:Analysis and Remedies[J]. Archives of Computational Methods in Engineering, 2023, 30(6):3617-3656.
|