[1]MAJUMDAR A, BHUSHAN B. Fractal Model of Elastic-plastic Contact between Rough Surfaces[J]. Journal of Tribology, 1991, 113(1):1-11.
[2]YAN W, KOMVOPOULOS K. Contact Analysis of Elastic-plastic Fractal Surfaces[J]. Journal of Applied Physics, 1998, 84(7):3617-3624.
[3]GREENWOOD J A, WILLIAMSON J B P. Contact of Nominally Flat Surfaces[J]. Proceedings of the Royal Society of London Series A, 1966, 295(1442):300-319.
[4]兰国生, 孙万, 谭文兵, 等. 基于圆锥微凸体的结合面法向刚度分形模型研究[J]. 振动与冲击, 2021, 40(15):207-215.
LAN Guosheng, SUN Wan, TAN Wenbing, et al. Cone Elastoplastic Fractal Model of Two Contact Rough Surfaces[J]. Journal of Vibration and Shock, 2021, 40(15):207-215.
[5]谭文兵, 兰国生, 张学良, 等. 依据各向异性分形理论的固定结合面椭圆弹塑性法向接触刚度建模及仿真分析[J]. 固体力学学报, 2021, 42(1):63-76.
TAN Wenbing, LAN Guosheng, ZHANG Xueliang, et al. Modeling and Simulation Analysis of Elliptic-plastic Normal Contact Stiffness of Joint Surface Based on Anisotropic Fractal Theory[J]. Chinese Journal of Solid Mechanics, 2021, 42(1):63-76.
[6]陈永会, 张学良, 温淑花, 等. 粗糙表面弹塑性接触连续光滑指数函数模型与法向接触刚度研究[J]. 西安交通大学学报, 2016, 50(7):58-67.
CHEN Yonghui, ZHANG Xueliang, WEN Shuhua, et al. Research on Continuous Smooth Exponential Model of Elastic-plastic Contact and Normal Contact Stiffness of Rough Surface[J]. Journal of Xi’an Jiaotong University, 2016, 50(7):58-67.
[7]孙献光,孟春晓,段田堂. 考虑摩擦因数和微凸体相互作用的粗糙表面接触热导分形模型[J]. 摩擦学学报,2020,40(5):626-633.
SUN Xianguang, MENG Chunxiao, DUAN Tiantang. A Fractal Model of Thermal Contact Conductance of Rough Surfaces Considering Friction Coefficient and Asperity Interaction[J]. Journal of Tribology, 2020, 40(5):626-633.
[8]田红亮, 董元发, 钟先友, 等. 圆锥微凸体在粗糙表面接触分析中的应用[J]. 西安交通大学学报, 2017, 51(11):71-78.
TIAN Hongliang, DONG Yuanfa, ZHONG Xianyou, et al. Application of Conical Asperity in Contact Analysis of Rough Surfaces[J]. Journal of Xi’an Jiaotong University, 2017, 51(11):71-78.
[9]陈奇, 黄守武, 张振, 等. 考虑摩擦因素的两圆柱体表面接触承载能力的分形模型研究[J]. 机械工程学报, 2016, 52(7):114-121.
CHEN Qi, HUANG Shouwu, ZHANG Zhen, et al. Research on Fractal Contact Model for Contact Carrying Capacity of Two Cylinders' Surfaces Considering Friction Factors[J]. Journal of Mechanical Engineering, 2016, 52(7):114-121.
[10]WANG Honghai, JIA Peng, WANG Liquan, et al. Modeling of the Loading–Unloading Contact of Two Cylindrical Rough Surfaces with Friction[J]. Applied Sciences, 2020, 10(3):742.
[11]YUAN Yuan, CHENG Yu, LIU Kai, et al. A RevisedMajumdar and Bushan Model of Elastoplastic Contact between Rough Surfaces[J]. Applied Surface Science, 2017, 425:1138-1157.
[12]CHEN Qi, XU Fan, LIU Peng, et al. Research on Fractal Model of Normal Contact Stiffness between Two Spheroidal Joint Surfaces Considering Friction Factor[J]. Tribology International, 2016, 97:253-264.
[13]赵韩, 陈奇, 黄康. 两圆柱体结合面的法向接触刚度分形模型[J]. 机械工程学报, 2011, 47(7):53-58.
ZHAO Han, CHEN Qi, HUANG Kang. Fractal Model of Normal Contact Stiffness between Two Cylinders' Joint Interfaces[J]. Journal of Mechanical Engineering, 2011, 47(7):53-58.
[14]王晓鹏, 刘世军. 微点蚀齿轮法向接触刚度分形预估模型[J]. 机械工程学报, 2021, 57(1):68-76.
WANG Xiaopeng, LIU Shijun. Fractal Prediction Model of Normal Contact Stiffness of Micro-pitting Gear[J]. Journal of Mechanical Engineering, 2021, 57(1):68-76.
[15]莫海军, 赵航, 成雨, 等. 微粒子喷丸齿轮法向接触刚度模型[J]. 华南理工大学学报(自然科学版), 2022, 50(9):90-98.
MO Haijun, ZHAO Hang, CHENG Yu, et al. Normal Contact Stiffness Model of Fine Particle Shot Peening Gear[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(9):90-98.
[16]孙秀全, 王铁, 张瑞亮, 等. 斜齿轮渐进性磨损对齿轮振动特性的影响分析[J]. 机械传动, 2021, 45(1):17-22.
SUN Xiuquan, WANG Tie, ZHANG Ruiliang, et al. Analysis of the Influence of Progressive Wear of Helical Gear on Gear Vibration Characteristic[J]. Journal of Mechanical Transmission, 2021, 45(1):17-22.
[17]孙万. 两接触粗糙表面法向接触特性三维分形模型[D]. 太原:太原科技大学, 2021.
SUN Wan. Three-dimensional Fractal Model of Normal Contact Characteristics of Two Contact Rough Surfaces[D].Taiyuan:Taiyuan University of Science and Technology, 2021.
[18]MAO Hancheng, SUNYongguo, XU Tiantian, et al. Numerical Calculation Method of Meshing Stiffness for the Beveloid Gear Considering the Effect of Surface Topography[J]. Mathematical Problems in Engineering, 2021, 2021:8886792.
[19]葛世荣, 朱华. 摩擦学的分形[M]. 北京:机械工业出版社, 2005:126-149.
GE Shirong, ZHU Hua. Fractal of Tribology[M]. Beijing:China Machine Press, 2005:126-149.
[20]JOURANI A. A New Three-dimensional Numerical Model of Rough Contact:Influence of Mode of Surface Deformation on Real Area of Contact and Pressure Distribution[J]. Journal of Tribology, 2015, 137(1):011401.
[21]刘鹏,赵韩,黄康,等.线段齿轮法向接触刚度的改进分形模型研究[J].机械工程学报, 2018, 54(7):114-122.
LIU Peng, ZHAO Han, HUANG Kang, et al. Research on Normal Contact Stiffness of Micro-segments Gear Based onImproved Fractal Model[J]. Journal of Mechanical Engineering, 2018, 54(7):114-122.
[22]刘文, 李锐, 张晋红, 等. 斜齿轮时变啮合刚度算法修正及影响因素研究[J]. 湖南大学学报(自然科学版), 2018, 45(2):1-10.
LIU Wen, LI Rui, ZHANG Jinhong, et al. Study on Correction Algorithm of Time-varying Mesh Stiffness of Helical Gears and Its Influencing Factors[J]. Journal of Hunan University (Natural Sciences), 2018, 45(2):1-10.
|