中国机械工程 ›› 2025, Vol. 36 ›› Issue (11): 2525-2536.DOI: 10.3969/j.issn.1004-132X.2025.11.007
• 机械基础工程 • 上一篇
罗刚1,2,3(
), 何涛1,2,3(
), 王传礼1,2,3, 赵凯平1,2,3, 郑浩1,2,3
收稿日期:2024-07-03
出版日期:2025-11-25
发布日期:2025-12-09
通讯作者:
何涛
作者简介:罗刚,男,1999年生,博士研究生。研究方向为流体传动与控制。E-mail:lg1469757460@163.com基金资助:
Gang LUO1,2,3(
), Tao HE1,2,3(
), Chuanli WANG1,2,3, Kaiping ZHAO1,2,3, Hao ZHANG1,2,3
Received:2024-07-03
Online:2025-11-25
Published:2025-12-09
Contact:
Tao HE
摘要:
柱塞副的润滑状态是决定轴向柱塞泵使用寿命的关键,因此提出一种织构化柱塞副以降低低压程油膜的失效风险。针对柱塞副的支撑长度可变,基于动态节点网格建立了一种柱塞副织构化表面润滑模型。采用有限差分法对压力方程进行离散处理,通过油膜压力和偏心量的双层循环获取织构化表面的压力和膜厚分布,分析工况参数和织构参数对润滑特性的影响。研究结果表明:更大的织构半径和织构面积率对柱塞副的润滑减摩效果更好,减摩作用的影响顺序(从高至低)为:织构面积率,织构半径,织构深度;增大织构半径和减小织构深度均可增强油膜的承载能力,且30%的织构面积率具有更高的工况适应度;结合负载试验,织构化试件的摩擦因数较无织构时的摩擦因数最大降幅可达29.8%。研究结果可为轴向柱塞泵的摩擦学设计提供参考。
中图分类号:
罗刚, 何涛, 王传礼, 赵凯平, 郑浩. 轴向柱塞泵织构化柱塞副低压程润滑特性研究[J]. 中国机械工程, 2025, 36(11): 2525-2536.
Gang LUO, Tao HE, Chuanli WANG, Kaiping ZHAO, Hao ZHANG. Research on Lubrication Characteristics of Textured Piston-cylinder Pairs of Axial Piston Pumps under Low-pressure Stroke[J]. China Mechanical Engineering, 2025, 36(11): 2525-2536.
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| 柱塞半径rp/mm | 8.00 | 压力收敛精度ε1 | 10-4 |
| 缸体孔半径rc/mm | 8.02 | 承载收敛精度ε2 | 10-2 |
| 常压黏度μ0/(Pa·s) | 0.05 | 黏压指数α | 0.68 |
| 常压密度ρ0/(kg·m-3) | 850 | 松弛因子ω | 0.01 |
| 入口压力pj=1/MPa | 0.1 | 空化压力pc/MPa | 10-8 |
| 出口压力pj=J /MPa | 0.1 | 柱塞长度lmax/mm | 50 |
表1 柱塞副润滑计算参数
Tab.1 Calculation parameters for lubrication of piston-cylinder pair
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| 柱塞半径rp/mm | 8.00 | 压力收敛精度ε1 | 10-4 |
| 缸体孔半径rc/mm | 8.02 | 承载收敛精度ε2 | 10-2 |
| 常压黏度μ0/(Pa·s) | 0.05 | 黏压指数α | 0.68 |
| 常压密度ρ0/(kg·m-3) | 850 | 松弛因子ω | 0.01 |
| 入口压力pj=1/MPa | 0.1 | 空化压力pc/MPa | 10-8 |
| 出口压力pj=J /MPa | 0.1 | 柱塞长度lmax/mm | 50 |
| 织构参数 | 数值 | 网格参数 | 数值 |
|---|---|---|---|
| 织构半径rt/mm | 0.7 | 径向子域数M | 14 |
| 织构深度ht/μm | 30 | 轴向子域数N | 12 |
| 径向间距dta /mm | 3.5 | 径向节点数I | 501 |
| 轴向间距dtb /mm | 3.4 | 轴向节点数J | 421 |
| 织构数nt | 168 | 网格数ng | 2.1×105 |
表2 指定算例下织构参数和网格参数
Tab.2 Texture parameters and mesh parameters under specified examples
| 织构参数 | 数值 | 网格参数 | 数值 |
|---|---|---|---|
| 织构半径rt/mm | 0.7 | 径向子域数M | 14 |
| 织构深度ht/μm | 30 | 轴向子域数N | 12 |
| 径向间距dta /mm | 3.5 | 径向节点数I | 501 |
| 轴向间距dtb /mm | 3.4 | 轴向节点数J | 421 |
| 织构数nt | 168 | 网格数ng | 2.1×105 |
| 网格参数 | 支撑长度l/mm | |||||
|---|---|---|---|---|---|---|
| 29 | 32 | 35 | 38 | 41 | 44 | |
| 径向子域数M | 14 | 14 | 14 | 14 | 14 | 14 |
| 轴向子域数N | 8 | 9 | 10 | 11 | 12 | 13 |
| 径向节点数I | 501 | 501 | 501 | 501 | 501 | 501 |
| 轴向节点数J | 285 | 319 | 353 | 387 | 421 | 455 |
| 网格数ng/105 | 1.42 | 1.60 | 1.77 | 1.93 | 2.10 | 2.27 |
表3 不同支撑长度下网格参数
Tab.3 Grid parameters under different support lengths
| 网格参数 | 支撑长度l/mm | |||||
|---|---|---|---|---|---|---|
| 29 | 32 | 35 | 38 | 41 | 44 | |
| 径向子域数M | 14 | 14 | 14 | 14 | 14 | 14 |
| 轴向子域数N | 8 | 9 | 10 | 11 | 12 | 13 |
| 径向节点数I | 501 | 501 | 501 | 501 | 501 | 501 |
| 轴向节点数J | 285 | 319 | 353 | 387 | 421 | 455 |
| 网格数ng/105 | 1.42 | 1.60 | 1.77 | 1.93 | 2.10 | 2.27 |
| 网格参数 | 织构半径rt/mm | ||||
|---|---|---|---|---|---|
| 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
| 径向子域数M | 20 | 16 | 14 | 12 | 11 |
| 轴向子域数N | 17 | 14 | 12 | 10 | 9 |
| 径向节点数I | 751 | 601 | 501 | 451 | 401 |
| 轴向节点数J | 633 | 505 | 421 | 379 | 337 |
| 网格数ng/105 | 4.75 | 3.03 | 2.10 | 1.70 | 1.35 |
表4 不同织构半径下网格参数
Tab.4 Grid parameters under different texture radii
| 网格参数 | 织构半径rt/mm | ||||
|---|---|---|---|---|---|
| 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
| 径向子域数M | 20 | 16 | 14 | 12 | 11 |
| 轴向子域数N | 17 | 14 | 12 | 10 | 9 |
| 径向节点数I | 751 | 601 | 501 | 451 | 401 |
| 轴向节点数J | 633 | 505 | 421 | 379 | 337 |
| 网格数ng/105 | 4.75 | 3.03 | 2.10 | 1.70 | 1.35 |
| 参数 | 织构面积率σt/% | ||||
|---|---|---|---|---|---|
| 6 | 12 | 20 | 30 | 42 | |
| 径向子域数M | 10 | 14 | 18 | 22 | 26 |
| 轴向子域数N | 8 | 12 | 15 | 18 | 22 |
| 织构数nt | 80 | 168 | 270 | 396 | 572 |
| 网格数ng/105 | 2.10 | 2.10 | 2.10 | 2.10 | 2.10 |
表5 不同织构面积率下计算参数
Tab.5 Calculation parameters under different texture area ratios
| 参数 | 织构面积率σt/% | ||||
|---|---|---|---|---|---|
| 6 | 12 | 20 | 30 | 42 | |
| 径向子域数M | 10 | 14 | 18 | 22 | 26 |
| 轴向子域数N | 8 | 12 | 15 | 18 | 22 |
| 织构数nt | 80 | 168 | 270 | 396 | 572 |
| 网格数ng/105 | 2.10 | 2.10 | 2.10 | 2.10 | 2.10 |
| [1] | TANG Hesheng, REN Yan, XIANG Jiawei. A Novel Model for Predicting Thermoelastohydrodynamic Lubrication Characteristics of Slipper Pair in Axial Piston Pump[J]. International Journal of Mechanical Sciences, 2017, 124: 109-121. |
| [2] | NIE Songlin, GUO Ming, YIN Fanglong, et al. Research on Fluid-structure Interaction for Piston/Cylinder Tribopair of Seawater Hydraulic Axial Piston Pump in Deep-sea Environment[J]. Ocean Engineering, 2021, 219: 108222. |
| [3] | ZHAO Kaiping, WANG Chuanli, HE Tao, et al. Theoretical and Experimental Study on Lubrication and Friction of Slipper Pair of Valve Distribution Piston Pump Based on FVM-TRD Coupling Method[J]. Tribology International, 2024, 194: 109456. |
| [4] | MA Kai, WU Defa, XU Runzhou, et al. Experimental Investigation and Theoretical Evaluation on the Leakage Mechanisms of Seawater Hydraulic Axial Piston Pump under Sea Depth Circumstance[J]. Engineering Failure Analysis, 2022, 142: 106848. |
| [5] | ZHANG Junhui, CHEN Yuan, XU Bing, et al. Effect of Surface Texture on Wear Reduction of the Tilting Cylinder and the Valve Plate for a High-speed Electro-hydrostatic Actuator Pump[J]. Wear, 2018, 414: 68-78. |
| [6] | 聂松林, 李硕, 尹方龙, 等. 水液压泵柱塞套变形特性的流固耦合研究[J]. 中国机械工程, 2020, 31(10): 1135-1141. |
| NIE Songlin, LI Shuo, YIN Fanglong, et al. Study on Fluid-solid Coupling of Deformation Characteristics of Piston Bush in Water Hydraulic Pumps[J]. China Mechanical Engineering, 2020, 31(10): 1135-1141. | |
| [7] | ZHANG Junhui, Fei LYU, XU Bing, et al. Simulation and Experimental Investigation on Low Wear Rate Surface Contour of Piston/Cylinder Pair in an Axial Piston Pump[J]. Tribology International, 2021, 162: 107127. |
| [8] | MA X, WANG Q J, LU X Q, et al. A Transient Hydrodynamic Lubrication Model for Piston/Cylinder Interface of Variable Length[J]. Tribology International, 2018, 118: 227-239. |
| [9] | 王克龙, 姜继海, 汪泽波, 等. 柱塞副微运动轨迹及微倒角对其影响分析[J]. 华中科技大学学报(自然科学版), 2019, 47(6): 46-51. |
| WANG Kelong, JIANG Jihai, WANG Zebo, et al. Micro-motion of Piston/Cylinder Interface and the Influence of Micro Chamfering on It[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(6): 46-51. | |
| [10] | 胡敏, 高鹏, 闵思婕, 等. 超高压斜盘式轴向柱塞泵柱塞副摩擦界面油膜固液耦合作用特性研究[J]. 机械工程学报, 2022, 58(20): 438-452. |
| HU Ming, GAO Peng, MIN Sijie, et al. Study on the Solid-liquid Interaction Characteristics of the Oil Film within Piston Cylinder Pair of the Ultra-high Pressure Swash Plate Type Axial Piston Pump[J]. Journal of Mechcanical Engineering, 2022, 58(20): 438-452. | |
| [11] | 杭旸, 闫康昊, 黄丹. 计入柱塞套弹性变形的柱塞副摩擦与密封特性分析[J]. 中国机械工程, 2023, 34(1): 17-26. |
| HANG Yang, YAN Kanghao, HUANG Dan. Analyses of Friction and Sealing Characteristics of Piston/Bushing Interfaces Considering Elastic Deformations[J]. China Mechanical Engineering, 2023, 34(1): 17-26. | |
| [12] | LIU Yinshui, LI Donglin, TANG Zhenyu, et al. Thermodynamic Modeling, Simulation and Experiments of a Water Hydraulic Piston Pump in Water Hydraulic Variable Ballast System[J]. Ocean Engineering, 2017, 138: 5-44. |
| [13] | LUO Gang, HE Tao, WANG Chuanli, et al. A Novel Variable Liquid-properties Thermal Network Model for Researching on Thermodynamic Characteristics of Ethylene Glycol Piston Pump[J]. International Communications in Heat and Mass Transfer, 2024, 150: 107185. |
| [14] | HAIDAK G, WEI X F, LI F Y, et al. Heat Effects Modelling on the Efficiency Loss of the Lubricating Interface between Piston and Cylinder in Axial Piston Pumps[J]. Tribology International, 2022, 175: 107846. |
| [15] | 李强, 刘清磊, 杜玉晶, 等. 织构化表面优化设计及应用的研究进展[J]. 中国表面工程, 2021, 34(6): 59-73. |
| LI Qiang, LIU Qinglei, DU Yujing, et al. Advances in Optimization Design and Application of Textured Surfaces[J]. China Surface Engineering, 2021, 34(6): 59-73. | |
| [16] | BAI L Q, MENG Y G, KHAN Z A, et al. The Synergetic Effects of Surface Texturing and MoDDP Additive Applied to Ball-on-disk Friction Subject to Both Flooded and Starved Lubrication Conditions[J]. Tribology Letters, 2017, 65(4): 163. |
| [17] | MAO Yang, ZENG Liangcai, LU Yan. Modeling and Optimization of Cavitation on a Textured Cylinder Surface Coupled with the Wedge Effect[J]. Tribology International, 2016, 104: 212-224. |
| [18] | LIU Di, WANG Shaoping, ZHANG Chao, et al. Numerical Study of the Effects of Textured Shaft on the Wear of Rotary Lip Seals[J]. Tribology International, 2019, 138: 215-238. |
| [19] | 张东亚, 赵飞飞, 高峰, 等. 二层沟槽织构对机床导轨表面润滑特性的影响[J]. 中国机械工程, 2018, 29(14): 1661-1665. |
| ZHANG Dongya, ZHAO Feifei, GAO Feng, et al. Effects of Double-layer Groove Texture on Lubrication Performance of Machine Tool Slideway Surfaces[J]. China Mechanical Engineering, 2018, 29(14): 1661-1665. | |
| [20] | 王丽丽, 张伟, 葛雪, 等. 复合微织构排列方式对轴承润滑性能的影响[J]. 中国表面工程, 2023, 36(1): 145-155. |
| WANG Lili, ZHANG Wei, GE Xue, et al. Effect of Compound Micro Texture Arrangement on Journal Bearing Lubrication Performance[J]. China Surface Engineering, 2023, 36(1): 145-155. | |
| [21] | MA X, WANG Q J, LU X Q, et al. Piston Surface Design to Improve the Lubrication Performance of a Swash Plate Pump[J]. Tribology International, 2019, 132: 275-285. |
| [22] | 李栋, 刘晓玲, 李磊, 等. 计入刚度影响效应的滚动直线导轨几何参数对润滑性能的影响[J]. 机械工程学报, 2021, 57(7): 100-108. |
| LI Dong, LIU Xiaoling, LI Lei, et al. Influence of Geometric Parameters on Lubrication Performance of Rolling Linear Guides Considering Stiffness Effects[J]. Journal of Mechcanical Engineering, 2021, 57(7): 100-108. |
| [1] | 叶绍干, 陈天星, 陈鼎, 苗克非, 赵守军, 刘会祥. 柱塞泵缸体-主轴花键齿面修形及抗磨损研究[J]. 中国机械工程, 2025, 36(8): 1767-1773. |
| [2] | 叶绍干, 赖伟群, 侯亮, 卜祥建. 锥形缸体球面配流副润滑特性建模及试验验证[J]. 中国机械工程, 2022, 33(20): 2420-2428,2436. |
| [3] | 谢迟新, 刘桓龙, 贾瑞河, 黎强. 基于MPS方法的二级齿轮箱飞溅润滑特性研究[J]. 中国机械工程, 2021, 32(15): 1827-1835,1843. |
| [4] | 刘思远1,2;王广达1,2;孙红梅3;刘建勋4;姜万录1,2. 基于润滑机理的智能液压元件本体性能预测方法[J]. 中国机械工程, 2020, 31(08): 952-959. |
| [5] | 高彦军, 谷立臣, 焦龙飞. 油液特性对柱塞泵流量脉动影响的仿真分析[J]. 中国机械工程, 2017, 28(11): 1333-1338. |
| [6] | 刘巧燕, 闻德生, 高俊峰. 双定子力平衡轴向柱塞泵及其流量波动性分析[J]. 中国机械工程, 2017, 28(02): 228-232. |
| [7] | 李婷, 马吉恩, 章禹, 方攸同. 基于CFD的磁流体轴承润滑膜特性分析[J]. 中国机械工程, 2016, 27(07): 939-944. |
| [8] | 刘春节, 吴小锋, 干为民, 何亚峰. 基于全空化模型的柱塞泵内空化流动数值模拟[J]. 中国机械工程, 2015, 26(24): 3341-3347. |
| [9] | 张国涛, 尹延国. 基于叶顶曲率半径变化的变量叶片泵叶片-定子副润滑数值分析[J]. 中国机械工程, 2015, 26(18): 2481-2485,2490. |
| [10] | 薄纪康, 吴小锋. 柱塞泵机液动态耦合仿真与实验研究[J]. 中国机械工程, 2014, 25(3): 410-416. |
| [11] | 李胜, 张培林, 李兵, 王国德. 基于量子遗传算法的轴向柱塞泵故障特征选择[J]. 中国机械工程, 2014, 25(12): 1659-1644. |
| [12] | 刘亚俊, 唐电, 魏华刚. 清洗机斜盘柱塞泵运动特性分析[J]. 中国机械工程, 2013, 24(23): 3140-3143. |
| [13] | 刘亚俊;唐电;魏华刚. 清洗机斜盘轴向柱塞泵流道的流场仿真与结构优化设计[J]. 中国机械工程, 2013, 24(17): 2358-2361. |
| [14] | 钟伟旭, 权龙. 并联式三油口轴向变量柱塞泵设计、建模与仿真 [J]. 中国机械工程, 2011, 22(7): 869-872. |
| [15] | 徐兵, 李春光, 张斌, 许书生. 基于虚拟样机的轴向柱塞泵压力脉动特性研究 [J]. 中国机械工程, 2010, 21(10): 1203-1207. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||