中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2351-2358.DOI: 10.3969/j.issn.1004-132X.2025.10.024

• 可持续制造 • 上一篇    

不确定服役环境下废旧零部件损伤-质量状态映射模型

郭洪飞1,2(), 钟方4, 任亚平3()   

  1. 1.暨南大学广东省大湾区智慧物流国际科技合作基地, 珠海, 519070
    2.内蒙古工业大学数据科学与应用学院, 呼和浩特, 010051
    3.北京理工大学(珠海), 珠海, 519085
    4.暨南大学管理学院, 广州, 510632
  • 收稿日期:2024-10-18 出版日期:2025-10-25 发布日期:2025-11-05
  • 通讯作者: 任亚平
  • 作者简介:郭洪飞,男,1980年生,教授、博士研究生导师。研究方向为智能制造、工业物联网、数字孪生等。E-mail:ghf-2005@163.com
    任亚平*(通信作者),男,1995年生,博士、教授。研究方向为可持续设计与制造、产品拆解决策理论与方法、优化算法设计及应用等。E-mail:renyp1@163.com
  • 基金资助:
    国家自然科学基金(52205526);国家自然科学基金(52465061);广州市科技计划(202201010284);中央高校基本科研业务费专项资金(21623219);内蒙古自治区科技创新重大示范工程“揭榜挂帅”项目(2024JBGS0035);内蒙古自治区自然科学基金重点项目(2024ZD26);内蒙古自治区社会科学基金重大专项(2024WTZD03);内蒙古自治区重点研发和成果转化计划(2023YFJM0007);贵州省教育厅联合开放基金(黔教技[2022]438号)

Damage-quality State Mapping Model of Scrap Parts under Uncertain Service Environment

Hongfei GUO1,2(), Fang ZHONG4, Yaping REN3()   

  1. 1.Guangdong Greater Bay Area Intelligent Logistics International Science and Technology Cooperation Base,Jinan University,Zhuhai,Guangdong,519070
    2.School of Data Science and Application,Inner Mongolia University of Technology,Hohhot,010051
    3.Beijing Institute of Technology(Zhuhai),Zhuhai,Guangdong,519085
    4.School of Management,Jinan University,Guangzhou,510632
  • Received:2024-10-18 Online:2025-10-25 Published:2025-11-05
  • Contact: Yaping REN

摘要:

服役环境的不确定性使得废旧零部件的质量评估变得复杂。提出了一种基于Dirichlet分布的损伤-质量状态映射模型,该模型通过分析废旧零部件失效行为来确定主要失效特征,采用多项分布对零部件损伤量数据进行数学抽象,选取Dirichlet分布作为先验概率分布,结合贝叶斯公式更新得到后验分布参数,从而获得将损伤量数据映射到不同质量等级的后验概率期望值。进一步,引入D-S证据理论融合损伤信息来综合评估废旧零部件质量状况。为了验证模型的可行性和有效性,以废旧蜗轮蜗杆为案例研究对象,并与现有方法进行对比,实验结果显示,该模型在预测精度和泛化能力上具有优势。

关键词: 不确定服役环境, 废旧零部件, 质量评估, Dirichlet分布

Abstract:

Given the uncertainty of the service environment, the quality assessment of scrap parts became more complex. A damage-based multi-state mapping model (DBMS) was proposed herein based on Dirichlet distribution. The model determined the main failure characteristics by analyzing the failure behaviors of the scrap parts, adopted multinomial distribution for mathematical abstraction of the damage data of parts, and selected Dirichlet distribution as the prior probability distribution. The posterior distribution parameters were updated by Bayes formula, and the posterior probability expected value of damage data mapped to different quality levels was obtained. Further, D-S evidence theory was introduced to integrate damage information to realize the comprehensive assessment of the quality of scrap parts. In order to verify the feasibility and effectiveness of the model, waste worm gear was taken as the case study object and compared with existing literature methods. The experimental results show that the model has advantages in prediction accuracy and generalization ability.

Key words: uncertain service environment, scrap part, quality assessment, Dirichlet distribution

中图分类号: