中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2284-2291.DOI: 10.3969/j.issn.1004-132X.2025.10.015
• 机械基础工程 • 上一篇
收稿日期:2025-04-30
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
田青龙
作者简介:於祖庆,男,1987年生,博士、副教授。研究方向为多柔体系统动力学建模与计算方法、绝对节点坐标法、计算机辅助设计与分析整合、多物理场分析方法等。发表论文30余篇。E-mail:yuzq@hhu.edu.cn基金资助:
Zuqing YU1(
), Tingyu QI1, Zhuo LIU1, Qinglong TIAN1,2(
)
Received:2025-04-30
Online:2025-10-25
Published:2025-11-05
Contact:
Qinglong TIAN
摘要:
针对空间薄膜天线自旋过程中柔性体多尺度耦合动力学建模与控制难题,提出了一种薄膜天线混合建模与姿态解耦控制策略。采用绝对节点坐标法的薄板单元与圆截面梁单元建立了薄膜-空心撑杆混合单元动力学模型。引入薄膜非线性本构描述薄膜天线作动过程中张紧-松弛状态的变化。利用绝对节点坐标法可以同时描述柔性体变形与刚体转动的特性,对选定节点的位置向量梯度矩阵进行极化分解,解算出薄膜天线姿态信息并在此基础上施加比例-微分力矩控制。仿真结果表明,提出的动力学建模与控制方法可以有效地实现薄膜天线姿态跟踪误差渐进收敛。
中图分类号:
於祖庆, 齐婷玉, 刘卓, 田青龙. 空间薄膜天线变形/姿态耦合动力学与控制[J]. 中国机械工程, 2025, 36(10): 2284-2291.
Zuqing YU, Tingyu QI, Zhuo LIU, Qinglong TIAN. Deformation/Attitude Coupling Dynamics and Control of Space Membrane Antennas[J]. China Mechanical Engineering, 2025, 36(10): 2284-2291.
| 参数 | 数值 |
|---|---|
| 薄膜长度W/m | 2.1 |
| 薄膜宽度L/m | 2.1 |
| 薄膜厚度t1/m | 2×10-5 |
| 圆截面梁截面壁厚t2/m | 5×10-4 |
| 圆截面梁外径R/m | 0.02 |
| 薄膜密度 | 1400 |
| 薄膜弹性模量E1/GPa | 2.3 |
| 薄膜及撑杆泊松比 | 0.3 |
| 撑杆密度 | 1560 |
| 撑杆弹性模量E2/GPa | 100 |
表1 薄膜-撑杆混合模型参数
Tab.1 Parameters of the film-beam hybrid model
| 参数 | 数值 |
|---|---|
| 薄膜长度W/m | 2.1 |
| 薄膜宽度L/m | 2.1 |
| 薄膜厚度t1/m | 2×10-5 |
| 圆截面梁截面壁厚t2/m | 5×10-4 |
| 圆截面梁外径R/m | 0.02 |
| 薄膜密度 | 1400 |
| 薄膜弹性模量E1/GPa | 2.3 |
| 薄膜及撑杆泊松比 | 0.3 |
| 撑杆密度 | 1560 |
| 撑杆弹性模量E2/GPa | 100 |
| 类型 | 旋转角度 |
|---|---|
| 工况1 | (0°,0°,8°) |
| 工况2 | (8°,0°,0°) |
表 2 模型的目标旋转角度
Tab.2 The target rigid body rotation angle of the model
| 类型 | 旋转角度 |
|---|---|
| 工况1 | (0°,0°,8°) |
| 工况2 | (8°,0°,0°) |
| [1] | 彭福军,谢超,张良俊. 面向空间应用的薄膜可展开结构研究进展及技术挑战[J]. 载人航天,2017, 23(4): 427-439. |
| PENG Fujun, XIE Chao, ZHANG Liangjun. Research Progress and Technological Challenges of Thin Film Deployable Structures for Space Applications [J]. Journal of Astronautics, 2017, 23(4): 427-439. | |
| [2] | 李鹏飞.薄膜结构褶皱分析及抑制方法研究[D].西安:西安电子科技大学,2023. |
| LI Pengfei. Study on Folding Analysis and Suppression Method of Thin Film Structure [D]. Xi'an:Xidian University, 2023. | |
| [3] | FANG H, LOU M, HUANG J, et al. Development of a Three-meter Ka-band Reflectarray Antenna [R].Denver: AIAA Electronic Library, 2002. |
| [4] | HUANG J, FANG H, RICHARD L, et al. The Development of Large Flat Inflatable Antenna for Deep-space Communications [R]. San Diego: AIAA Electronic Library, 2004. |
| [5] | FANG H, KNARR K, QUIJANO U, et al. In-space Deployable Deflectarray Antenna [R]. Schaumburg: AIAA Electronic Library, 2008. |
| [6] | HEALD J, POTVIN M, JIANG X. Experimental Investigations to Support a Multi-layer Deployable Membrane Structure for Space Antennae [R]. Austin: AIAA Electronic Library, 2005. |
| [7] | SHEN Y, MONTMITY S, ZHENG W, et al. Large SAR Membrane Antenna Deployable Structure Design and Dynamic Simulation [R]. Honolulu: AIAA Electronic Library, 2007. |
| [8] | JOACHIM B, MSINNAPIUS M. Deployable Composite Booms for Various Gossamer Space Structures [R]. Denver: AIAA Electronic Library, 2011. |
| [9] | STRAUBEL M, SEEFELDT P, SPIEYTZ P, et al. The Design and Test of the Gossamer-1 Boom Deployment Mechanisms Engineering Model [R]. Kissimmee: AIAA Electronic Library, 2015. |
| [10] | 肖薇薇,陈务军,付功义. 空间薄膜阵面结构褶皱分析[J]. 宇航学报, 2010,31 (11):2604-2609. |
| XIAO Weiwu, CHEN Wujun, FU Gongyi. Analysis of Folded Structures on the Surface of Space Film Membrane [J]. Journal of Astronautics, 2010, 31(11):2604-2609. | |
| [11] | 胥小勇,孙宇,蒋清海.薄膜张力控制系统的建模与设计[J].中国机械工程,2013,24(18):2452-2457. |
| XU Xiaoyong, SUN Yu, JIANG Qinghai. Modeling and Design of Film Tension Control System [J]. China Mechanical Engineering, 2013, 24(18): 2452-2457. | |
| [12] | 操安博,林秋红,邱慧,等. 空间薄膜结构粘接缝模型的建立与验证[J]. 宇航学报, 2023, 44(11):1777-1784. |
| CAO Anbo, LIN Qiuhong, QIU Hui, et al. Establishment and Verification of the Bonding Seam Model for Space Film Structures [J]. Journal of Astronautics, 2023, 44(11): 1777-1784. | |
| [13] | 荣吉利,宋逸博,刘志超,等. 圆形薄膜太阳翼展开动力学分析与模态分析[J]. 宇航学报, 2020, 41(9):1125-1131. |
| RONG Jili, SONG Yibo, LIU Zhichao, et al. Dynamic Analysis and Modal Analysis of Circular Film Solar Wing Deployment [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 1125-1131. | |
| [14] | 陈金铎,史爱明,樊世超. 考虑光压力和热载荷的太阳帆薄膜力学行为分析[J]. 宇航学报, 2024, 45(1):74-80. |
| CHEN Jinduo, SHI Aiming, FAN Shichao. Analysis of the Mechanical Behavior of Solar Sail Films Considering Light Pressure and Thermal Load [J]. Journal of Astronautics, 2024, 45(1): 74-80. | |
| [15] | SHABANA A A. Dynamics of Multibody Systems [M]. Chicago: Cambridge University Press, 2005. |
| [16] | 赵将,刘铖,田强,等. 黏弹性薄膜太阳帆自旋展开动力学分析[J]. 力学学报,2013,45(5):746-752. |
| ZHAO Jiang, LIU Cheng, TIAN Qiang,et al. Spin Deployment Dynamics Analysis of Viscoelastic Membrane Solar Sail[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(5):746-752. | |
| [17] | LIU Cheng, TIAN Qiang, HU Haiyan,et al. Dynamic Analysis of Membrane Systems Undergoing Overall Motions,Large Deformations and Wrinkles via Thin Shell Elements of ANCF[J]. Computer Methods in Applied Mechanics and Engineering,2013,258:81-95. |
| [18] | 薛鹏聪,刘铖,水小平. 基于ANCF的薄膜太阳帆自旋展开动力学模拟[J].深空探测学报(中英文),2022,9(2):217-229. |
| XUE Pengcong, LIU Cheng, SHUI Xiaoping. Kinematic Simulation of Spin Deployment of Thin Film Solar Sail Based on ANCF [J]. Journal of Deep Space Exploration (Chinese and English), 2022, 9(2): 217-229. | |
| [19] | 支敬德,戈新生.基于模糊滑模控制的挠性航天器姿态机动及抖振抑制研究[J].应用力学学报,2020,37(5):1972-1979+2317-2318. |
| ZHI Jingde, GE Xinsheng. Attitude Maneuver and Buffeting Suppression of Flexible Spacecraft based on Fuzzy Sliding Mode Control[J]. Chinese Journal of Applied Mechanics,2020,37(5):1972-1979+2317-2318. | |
| [20] | 尹一蓁,康国华,武俊峰,等.基于非线性变结构滑模控制器的薄膜航天器姿态机动控制研究[J].上海航天(中英文), 2024, 41(6):95-105. |
| YIN Yizhen, KANG Guohua, WU Junfeng, et al. Research on Attitude Maneuver Control of Thin-Film Spacecraft Based on Nonlinear Variable Structure Sliding Mode Controller[J]. Aerospace Shanghai (Chinese and English), 2024, 41(6):95-105. | |
| [21] | 殷春武. 航天器姿态控制方法及其关键技术综述[J].海军航空大学学报,2024,39(6):660-670. |
| YIN Chunwu. Review on Spacecraft Attitude Control Method and Its Key Technologies[J]. Journal of Naval Aviation University, 2024, 39(6):660-670. | |
| [22] | LIU, Yuhang, LUO Kai, TIAN Qiang, et al. Nonlinear Dynamics Design for In-space Assembly Motion of Manipulators on Flexible Base Structures[J]. Nonlinear Dynamics 2025,113,9485-9507. |
| [23] | MIKKOLA M A, SHABANA A A. A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications [J]. Multibody System Dynamics,2003,9(3):283-309. |
| [24] | DUFVA K, SHABANA A A. Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,2005,219(4):345-355. |
| [25] | SHABANA A A, YAKOUB R Y. Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements Implementation and Application[J]. Journal of Mechanical Design, 2001, 123:614-621. |
| [26] | LAN Peng, TIAN Qinglong, YU Zuqing. A New Absolute Nodal Coordinate Formulation Beam Element with Multilayer Circular Cross Section [J]. Acta Mechanica Sinica, 2020, 36(1): 82-96. |
| [27] | MIYAZAKI Y. Wrinkle/Slack Model and Finite Element Dynamics of Membrane[J]. International Journal for Numerical Methods in Engineering, 2006, 66(7): 1179-1209 |
| [1] | 李鹏飞;曹博宇;汪振宇;赵晨;赵荣昌. 一种外LET柔顺半铰的动力学建模与分析[J]. 中国机械工程, 2019, 30(14): 1727-1733. |
| [2] | 钱彦懿1;王慧2;余海东1. 基于绝对节点坐标法的钢索结构动力学模型与特性[J]. 中国机械工程, 2018, 29(13): 1540-1546. |
| [3] | 梁明轩1,2,3;李正刚2;唐任仲1;陈立2;黄川2. 基于柔性多体动力学的机械臂结构优化设计[J]. 中国机械工程, 2017, 28(21): 2562-2566. |
| [4] | 刘荣升, 李慧, 高英杰, 杨育林. 混凝土泵车臂架系统振动分析与实验[J]. 中国机械工程, 2015, 26(15): 2125-2129. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||