中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 2126-2139.DOI: 10.3969/j.issn.1004-132X.2025.09.025
• 工程前沿 • 上一篇
张申廷(), 雷金, 贾文兴, 张昕煜, 金鹏, 秦新燕(
)
收稿日期:
2024-08-07
出版日期:
2025-09-25
发布日期:
2025-10-15
通讯作者:
秦新燕
作者简介:
张申廷,男,1999年生,硕士研究生。研究方向为机械电子工程。E-mail:zst@stu.shzu.edu.cn基金资助:
Shenting ZHANG(), Jin LEI, Wenxing JIA, Xinyu ZHANG, Peng JIN, Xinyan QIN(
)
Received:
2024-08-07
Online:
2025-09-25
Published:
2025-10-15
Contact:
Xinyan QIN
摘要:
针对巡检设备对输电线路振动激励大、振动机理不明确的问题,通过研究移动载荷对输电线的动力学特性,探究其动力响应及振动规律。提出了一种三维动态非线性柔索模型,并对巡检机器人进行了动力学建模;采用联合拉格朗日-里兹法对移动载荷输电线耦合系统的动力学方程进行离散,利用MATLAB进行数值仿真,分析了非线性效应对输电线路的影响;针对移动载荷速度和输电线路安装高差的典型工况进行了仿真计算。结果表明,在移动载荷作用下,输电线呈非线性大位移特性并具有端部效应,轴向力增量的非线性因子最高达1.677;增大移动荷载速度(0.5~2 m/s),横向位移、纵向位移和轴向力增量分别增大2.4%、3.9%和4.4%,端部效应振幅分别增大140%、138%和225%;增大安装高差(0~10 m),输电线下垂距离减小,纵向位移与轴向力增量分别减小7.3%和6.2%,端部效应振频最大降低50%。研究成果可为移动载荷作用下柔索结构的相关工程设计提供理论参考。
中图分类号:
张申廷, 雷金, 贾文兴, 张昕煜, 金鹏, 秦新燕. 移动载荷作用下输电线路的动力响应分析[J]. 中国机械工程, 2025, 36(9): 2126-2139.
Shenting ZHANG, Jin LEI, Wenxing JIA, Xinyu ZHANG, Peng JIN, Xinyan QIN. Dynamic Response Analyses of Power Transmission Lines under Moving Loads[J]. China Mechanical Engineering, 2025, 36(9): 2126-2139.
本文计算模型 | 悬链线解析解 | ||
---|---|---|---|
高差 h=0 | 最大弧垂/m | 2.496 | 2.233 |
安装应力/MPa | 88.7 | 90.0 | |
高差 h=10 m | 最大弧垂/m | 1.153 | 1.027 |
安装应力/MPa | 88.7 | 90.0 |
表1 找形计算结果
Tab.1 The results of form finding
本文计算模型 | 悬链线解析解 | ||
---|---|---|---|
高差 h=0 | 最大弧垂/m | 2.496 | 2.233 |
安装应力/MPa | 88.7 | 90.0 | |
高差 h=10 m | 最大弧垂/m | 1.153 | 1.027 |
安装应力/MPa | 88.7 | 90.0 |
输电线截面 | 横向位移 | 纵向位移 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
静力学 | 动力学 | 静力学 | 动力学 | ||||||||||
高差 0 | x=0.25lc | -1.943 | -1.943 | 1.000 | -1.967 | -1.997 | 1.015 | -0.102 | -0.121 | 1.186 | -0.114 | -0.132 | 1.158 |
x=0.50lc | -2.508 | -2.486 | 0.991 | -2.548 | -2.528 | 0.992 | -0.138 | -0.152 | 1.102 | -0.139 | -0.154 | 1.108 | |
x=0.75lc | -1.944 | -1.946 | 1.001 | -1.975 | -2.002 | 1.014 | -0.106 | -0.123 | 1.160 | -0.117 | -0.134 | 1.145 | |
高差 10 m | x=0.25lc | -2.234 | -2.236 | 1.001 | -2.275 | -2.283 | 1.004 | -0.093 | -0.109 | 1.172 | -0.098 | -0.112 | 1.143 |
x=0.50lc | -2.902 | -2.861 | 0.986 | -2.941 | -2.879 | 0.979 | -0.124 | -0.138 | 1.113 | -0.127 | -0.143 | 1.126 | |
x=0.75lc | -2.216 | -2.219 | 1.001 | -2.258 | -2.262 | 1.002 | -0.107 | -0.129 | 1.206 | -0.111 | -0.132 | 1.189 |
表2 非线性效应对承载输电线所选截面最大静、动位移wmax和umax影响的比较
Tab.2 Comparison of nonlinear effects influence on maximum static and dynamic displacements wmax and umax in selected cross-sections of carrying cable
输电线截面 | 横向位移 | 纵向位移 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
静力学 | 动力学 | 静力学 | 动力学 | ||||||||||
高差 0 | x=0.25lc | -1.943 | -1.943 | 1.000 | -1.967 | -1.997 | 1.015 | -0.102 | -0.121 | 1.186 | -0.114 | -0.132 | 1.158 |
x=0.50lc | -2.508 | -2.486 | 0.991 | -2.548 | -2.528 | 0.992 | -0.138 | -0.152 | 1.102 | -0.139 | -0.154 | 1.108 | |
x=0.75lc | -1.944 | -1.946 | 1.001 | -1.975 | -2.002 | 1.014 | -0.106 | -0.123 | 1.160 | -0.117 | -0.134 | 1.145 | |
高差 10 m | x=0.25lc | -2.234 | -2.236 | 1.001 | -2.275 | -2.283 | 1.004 | -0.093 | -0.109 | 1.172 | -0.098 | -0.112 | 1.143 |
x=0.50lc | -2.902 | -2.861 | 0.986 | -2.941 | -2.879 | 0.979 | -0.124 | -0.138 | 1.113 | -0.127 | -0.143 | 1.126 | |
x=0.75lc | -2.216 | -2.219 | 1.001 | -2.258 | -2.262 | 1.002 | -0.107 | -0.129 | 1.206 | -0.111 | -0.132 | 1.189 |
输电线截面 | 静力学 | 动力学 | ||||||
---|---|---|---|---|---|---|---|---|
高差 0 | x=0.25lc | 18.071 | 5.237 | 8.557 | 1.634 | 5.206 | 7.615 | 1.463 |
x=0.50lc | 18.071 | 4.784 | 6.884 | 1.439 | 4.823 | 6.931 | 1.437 | |
x=0.75lc | 18.071 | 5.242 | 8.563 | 1.634 | 5.210 | 7.617 | 1.462 | |
高差 10 m | x=0.25lc | 18.023 | 5.018 | 8.414 | 1.677 | 5.106 | 7.482 | 1.465 |
x=0.50lc | 18.045 | 4.680 | 6.502 | 1.389 | 4.721 | 6.544 | 1.386 | |
x=0.75lc | 18.090 | 5.036 | 8.423 | 1.673 | 5.126 | 7.523 | 1.468 |
表3 非线性效应对承载输电线所选截面轴向力最大静、动力增量影响的比较
Tab.3 Comparison of nonlinear effects influence on maximum static and dynamic increments of axial forces in selected cross-sections of carrying cable
输电线截面 | 静力学 | 动力学 | ||||||
---|---|---|---|---|---|---|---|---|
高差 0 | x=0.25lc | 18.071 | 5.237 | 8.557 | 1.634 | 5.206 | 7.615 | 1.463 |
x=0.50lc | 18.071 | 4.784 | 6.884 | 1.439 | 4.823 | 6.931 | 1.437 | |
x=0.75lc | 18.071 | 5.242 | 8.563 | 1.634 | 5.210 | 7.617 | 1.462 | |
高差 10 m | x=0.25lc | 18.023 | 5.018 | 8.414 | 1.677 | 5.106 | 7.482 | 1.465 |
x=0.50lc | 18.045 | 4.680 | 6.502 | 1.389 | 4.721 | 6.544 | 1.386 | |
x=0.75lc | 18.090 | 5.036 | 8.423 | 1.673 | 5.126 | 7.523 | 1.468 |
[1] | YANG Lei, FAN Junfeng, LIU Yanhong, et al. A Review on State-of-the-art Power Line Inspection Techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12):9350-9365. |
[2] | ALHASSAN A B, ZHANG Xiaodong, SHEN Haiming, et al. Power Transmission Line Inspection Robots:a Review, Trends and Challenges for Future Research[J]. International Journal of Electrical Power & Energy Systems, 2020, 118:105862. |
[3] | QIN Xinyan, JIA Bo, LEI Jin, et al. A Novel Flying-walking Power Line Inspection Robot and Stability Analysis Hanging on the Line under Wind Loads[J]. Mechanical Sciences, 2022, 13(1):257-273. |
[4] | IRVINE H M. Cable Structures[M]. Cambridge:The MIT Press, 1981. |
[5] | HAGEDORN P, SCHÄFER B. On Non-linear Free Vibrations of an Elastic Cable[J]. International Journal of Non-Linear Mechanics, 1980, 15(4/5):333-340. |
[6] | REGA G, VESTRONI F, BENEDETTINI F. Parametric Analysis of Large Amplitude Free Vibrations of a Suspended Cable[J]. International Journal of Solids and Structures, 1984, 20(2):95-105. |
[7] | WU J S, CHEN C C. The Dynamic Analysis of a Suspended Cable Due to a Moving Load[J]. International Journal for Numerical Methods in Engineering, 1989, 28(10):2361-2381. |
[8] | WANG Yiming. The Transient Dynamics of a Cable-mass System Due to the Motion of an Attached Accelerating Mass[J]. International Journal of Solids and Structures, 2000, 37(9):1361-1383. |
[9] | BENEDETTINI F, REGA G. Non-linear Dynamics of an Elastic Cable under Planar Excitation[J]. International Journal of Non-Linear Mechanics, 1987, 22(6):497-509. |
[10] | VISWESWARA RAO G, IYENGAR R N. Internal Resonance and Non-linear Response of a Cable under Periodic Excitation[J]. Journal of Sound and Vibration, 1991, 149(1):25-41. |
[11] | PERKINS N C. Modal Interactions in the Non-linear Response of Elastic Cables under Parametric/External Excitation[J]. International Journal of Non-Linear Mechanics, 1992, 27(2):233-250. |
[12] | TAKAHASHI K, KONISHI Y. Non-linear Vibrations of Cables in Three Dimensions, Part I:Non-linear Free Vibrations[J]. Journal of Sound and Vibration, 1987, 118(1):69-84. |
[13] | LEE C, PERKINS N C. Three-dimensional Oscillations of Suspended Cables Involving Simultaneous Internal Resonances[M]∥ Advances in Nonlinear Dynamics:Methods and Applications. Dordrecht:Springer Netherlands, 1995:45-63. |
[14] | LUO A C J, MOTE C D. Equilibrium Solutions and Existence for Traveling, Arbitrarily Sagged Elastic Cables[J]. Journal of Applied Mechanics, 2000, 67(1):148-154. |
[15] | WARMINSKI J, ZULLI D, REGA G, et al. Revisited Modelling and Multimodal Nonlinear Oscillations of a Sagged Cable under Support Motion[J]. Meccanica, 2016, 51(11):2541-2575. |
[16] | REGA G. Theoretical and Experimental Nonlinear Vibrations of Sagged Elastic Cables[M]∥ Nonlinear Dynamic Phenomena in Mechanics. Dordrecht:Springer Netherlands, 2012::159-210. |
[17] | ZHOU Chao, LIU Yibing. Modeling and Mechanism of Rain-Wind Induced Vibration of Bundled Conductors[J]. Shock and Vibration, 2016, 2016(1):1038150. |
[18] | 胡鑫. 架空线路风偏多刚体模型研究与动态响应防治分析[D]. 北京:华北电力大学, 2022. |
HU Xin. Research on Multi-rigid-body Model for Wind-induced Deflection of Overhead Lines and Analysis of Dynamic Response Prevention[D]. Beijing:North China Electric Power University, 2022. | |
[19] | 刘小会, 胡友, 张路飞, 等. 任意高差的多档输电线动刚度理论建模[J]. 应用力学学报, 2020, 37(1):272-279. |
LIU Xiaohui, HU You, ZHANG Lufei, et al. Theoretical Modeling of Dynamic Stiffness for Multi-span Transmission Line with Arbitrary Height Difference[J]. Chinese Journal of Applied Mechanics, 2020, 37(1):272-279. | |
[20] | 包婉玉, 闵光云, 刘小会, 等. 离散方法对覆冰输电线主共振的影响分析[J]. 力学季刊, 2024, 45(2):506-518. |
BAO Wanyu, MIN Guangyun, LIU Xiaohui, et al. Analysis of the Influence of Discrete Method on the Principal Resonance of Iced Transmission Line[J]. Chinese Quarterly of Mechanics, 2024, 45(2):506-518. | |
[21] | 陈太聪, 马海涛, 苏成. 拉索静力状态的高精度无迭代求解方法研究[J]. 工程力学, 2013, 30(3):244-250. |
CHEN Taicong, MA Haitao, SU Cheng. Study on High-accuracy and Non-iteration Methods for Determining Static Status of a Cable[J]. Engineering Mechanics, 2013, 30(3):244-250. | |
[22] | 唐茂林. 大跨度悬索桥空间几何非线性分析与软件开发[D]. 成都:西南交通大学, 2003. |
TANG Maolin. 3D Geometric Nonlinear Analysis of Long-span Suspension Bridge and Its Software Development[D]. Chengdu:Southwest Jiaotong University, 2003. | |
[23] | TRIANTAFYLLOU M S, GRINFOGEL L. Natural Frequencies and Modes of Inclined Cables[J]. Journal of Structural Engineering, 1986, 112(1):139-148. |
[24] | WU Q, TAKAHASHI K, NAKAMURA S. Formulae for Frequencies and Modes of In-plane Vibrations of Small-sag Inclined Cables[J]. Journal of Sound and Vibration, 2005, 279(3/4/5):1155-1169. |
[25] | BRYJA D, KNAWA M. Computational Model of an Inclined Aerial Ropeway and Numerical Method for Analyzing Nonlinear Cable-car Interaction[J]. Computers & Structures, 2011, 89(21/22):1895-1905. |
[26] | KNAWA-HAWRYSZKÓW M, PROKOPOWICZ D, BRYJA D. Multipurpose Nonlinear Cable Model for Dynamic Response of Structures under Moving Load[J]. Computers & Structures, 2021, 257:106642. |
[27] | 王炜, 杨浩, 王强, 等. 特重冰区特高压直流线路导线脱冰跳跃高度及杆塔受力特征研究[J]. 重庆大学学报, 2025, 48(6):25-33. |
WANG Wei, YANG Hao, WANG Qiang, et al. Mechanical Characteristics of Tower and Conductor Jump Height of UHV DC Lines in Ultra-heavy Ice Zone after Ice-shedding[J]. Journal of Chongqing University, 2025, 48(6):25-33. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||