中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 2068-2080.DOI: 10.3969/j.issn.1004-132X.2025.09.019
• 增材制造 • 上一篇
杨凯1,2(), 王磊3, 汤永凯3, 刘谋斌1(
), 郭子傲2
收稿日期:
2024-11-21
出版日期:
2025-09-25
发布日期:
2025-10-15
通讯作者:
刘谋斌
作者简介:
杨凯,男,1983年生,正高级工程师。研究方向为先进工艺与成形、增材制造技术应用。E-mail:yangkai@861China.com基金资助:
Kai YANG1,2(), Lei WANG3, Yongkai TANG3, Moubin LIU1(
), Ziao GUO2
Received:
2024-11-21
Online:
2025-09-25
Published:
2025-10-15
Contact:
Moubin LIU
摘要:
综述了金属激光增材制造技术在高端装备制造中的创新应用与发展,介绍了其基本原理与优势,涵盖实现复杂结构的一体化制造、材料与结构的优化设计,以及部件的性能提升;探讨了激光增材制造技术在新材料开发、新工艺创新、新结构设计和新功能集成等方面为高端装备制造带来的创新机遇;分析了当前在高端装备制造领域应用金属激光增材制造技术所面临的挑战,如材料体系开发和新材料应用、制造装备开发、制造过程在线监测与质量控制技术,以及零件后处理等技术难题。最后,对高端装备应用金属激光增材制造技术的未来发展趋势进行了展望。
中图分类号:
杨凯, 王磊, 汤永凯, 刘谋斌, 郭子傲. 面向高端装备的金属激光增材制造技术发展与应用[J]. 中国机械工程, 2025, 36(9): 2068-2080.
Kai YANG, Lei WANG, Yongkai TANG, Moubin LIU, Ziao GUO. Development and Applications of Metal Laser Additive Manufacturing Technology for High-end Equipment[J]. China Mechanical Engineering, 2025, 36(9): 2068-2080.
编号 | 工艺类型 | 技术特点 | 应用场景 |
---|---|---|---|
1) | 激光粉末床熔融增材制造工艺 | 精度高、表面质量好,多曲面复杂结构成形一致性好,实现了高效率和高精度的有效结合 | 适合小批量生产 |
2) | 激光送粉增材制造工艺 | 材料利用率高、材料适应性强 | 适合中型、大型零件制造和修复 |
3) | 激光送粉增材制造工艺 | 送丝稳定、易于操作、材料利用率高 | 适合大型零件制造和修复 |
4) | 激光送粉增材制造工艺 | 丝材与激光束同轴,方向性好,多曲面复杂结构成形一致性好,实现了高效率和高精度的有效结合 | 适合大型零件制造和修复 |
5) | 激光丝材与粉末同步送进增材制造工艺 | 工艺灵活性高,结合了丝材和粉末的优点 | 适合大型零件制造和修复,多材料制造 |
6) | 激光与多能场复合增材制造工艺 | 结合了激光和多能场的优势 | 适合大型零件制造和修复,增强材料性能 |
表1 激光增材制造类型和技术特点
Tab.1 Types and technical characteristics of laser additive manufacturing
编号 | 工艺类型 | 技术特点 | 应用场景 |
---|---|---|---|
1) | 激光粉末床熔融增材制造工艺 | 精度高、表面质量好,多曲面复杂结构成形一致性好,实现了高效率和高精度的有效结合 | 适合小批量生产 |
2) | 激光送粉增材制造工艺 | 材料利用率高、材料适应性强 | 适合中型、大型零件制造和修复 |
3) | 激光送粉增材制造工艺 | 送丝稳定、易于操作、材料利用率高 | 适合大型零件制造和修复 |
4) | 激光送粉增材制造工艺 | 丝材与激光束同轴,方向性好,多曲面复杂结构成形一致性好,实现了高效率和高精度的有效结合 | 适合大型零件制造和修复 |
5) | 激光丝材与粉末同步送进增材制造工艺 | 工艺灵活性高,结合了丝材和粉末的优点 | 适合大型零件制造和修复,多材料制造 |
6) | 激光与多能场复合增材制造工艺 | 结合了激光和多能场的优势 | 适合大型零件制造和修复,增强材料性能 |
[1] | 卢秉恒.增材制造技术——现状与未来[J].中国机械工程,2020,31(1):19-23. |
LU Bingheng. Additive Manufacturing Technology—Current Status and Future [J]. China Mechanical Engineering, 2020,31 (1):19-23 | |
[2] | 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. |
WANG Huaming. Materials’ Fundamental Issues of Laser Additive Manufacturing for High-performance Large Metallic Components[J]. Acta Aeronauticaet Astronautica Sinica, 2014, 35(10):2690-2698. | |
[3] | 王向明.飞机新概念结构设计与工程应用[J].航空科学技术,2020,31(4):1-7. |
WANG Xiangming. New Concept Structural Design and Engineering Application of Aircraft [J]. Aviation Science and Technology, 2020, 31 (4):1-7. | |
[4] | 顾冬冬, 张红梅, 陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5):32-55. |
GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al.Laser Additive Manufacturing of High-performance Metallic Aerospace Components[J]. Chinese Journal of Lasers, 2020, 47(5):32-55. | |
[5] | 张卫红, 周涵, 李韶英, 等. 航天高性能薄壁构件的材料-结构一体化设计综述[J].航空学报, 2023, 44(9):627428-627428 |
ZHANG Weihong, ZHOU Han, LI Shaoying,et al.Material-structure Integrated Design for High-performance Aerospace Thin-walled Component[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9):627428-627428 | |
[6] | 王磊,卢秉恒.我国增材制造技术与产业发展研究[J].中国工程科学,2022,24(4):202-211. |
WANG Lei, LU Bingheng. Development of Additive Manufacturing Technology and Industry in China[J]. Strategic Study of Chinese Academy of Engineering, 2022, 24(4):202‒211 | |
[7] | 蒯腾飞,宋浦,姜炜,等.弹药战斗部增材制造技术研究现状与展望[J].火炸药学报,2023,46(3):199-213. |
KUAI Tengfei, SONG Pu, JIANG Wei, et al. Research Status and Prospects of Additive Manufacturing for Warhead[J]. Explosives and Propellants, 2023, 46(3):199-213. | |
[8] | Defense and Munitions. Hypersonics and 3D printing:Velo 3D, LockheedMartin, and Vibrant Team up with DoD’s LIFT Institute on a Data-driven Approach to Certifying Materials and Methods for Additively Manufactured Aerosystems[EB/OL]. (2023-09-12)[2024-12-09].. |
[9] | 柯林达,张小龙,崔哲,等.面向增材制造的导弹结构优化设计综述[J].空天防御,2023,6(2):28-34. |
KE Linda, ZHANG Xiaolong, CUI Zhe, et al. Review of Missile Structural Optimization Design for Additive Manufacturing [J]. Aerospace Defense, 2023,6 (2):28-34 | |
[10] | 朱继宏,何飞,张卫红.面向增材制造的飞行器结构优化设计关键问题[J].航空制造技术,2017(5):16-21. |
ZHU Jihong, HE Fei, ZHANG Weihong. Key Issues in Aircraft Structural Optimization Design for Additive Manufacturing [J]. Aviation Manufacturing Technology, 2017 (5):16-21. | |
[11] | GONG Guanghao, YE Jiajia, CHI Yiming, et al.Research Status of Laser Additive Manufacturing for Metal:a Review[J].Journal of Materials Research and Technology,2021,10 (6):12074-12086. |
[12] | WANG Tao, TANG Haibo, ZHU Yanyan, et al. Laser Additive Manufacturing of New α+β Titanium Alloy with High Strength and Ductility[J]. Journal of Materials Research and Technology, 2023, 26(9):7566-7582. |
[13] | LI Yi, WANG Zhenhong, XIAO Yuhang, et al.Review of Laser-metal Additive Manufacturing + X Hybrid Technology[J].Acta Aeronautica et Astronautica Sinica,2024,45(13):629349. |
[14] | JIMÉNEZ A, BIDARE P, HASSANIN H. Powder-based Laser Hybrid Additive Manufacturing of Metals:a Review[J]. International Journal of Machine Tools and Manufacture,2021,159:103855. |
[15] | CHOWDHURY S, YADAIAH N, PRAKASH C, et al. Laser Powder Bed Fusion:a State-of-the-art Review of the Technology, Materials, Properties & Defects, and Numerical Modelling[J]. Journal of Materials Research and Technology, 2022, 11(8):1479-1497. |
[16] | ZHU Zhiguang, HU Zhiheng, SEET Hangli, et al. Recent Progress on the Additive Manufacturing of Aluminum Alloys and Aluminum Matrix Composites:Microstructure, Properties, and Applications[J]. International Journal of Machine Tools and Manufacture, 2023, 160:104047. |
[17] | LI Xinzhi, FANG Xuewei, JIANG Xiao, et al.Additively Manufactured High-performance AZ91D Magnesium Alloys with Excellent Strength and Ductility via Nanoparticles Reinforcement[J].Additive Manufacturing,2023,69:103550. |
[18] | FAN Hongju, HU Jiaying, WANG You, et al. A Review of Laser Additive Manufacturing (LAM) Aluminum Alloys:Methods, Microstructures and Mechanical Properties[J]. Optics and Laser Technology, 2024, 136:110722. |
[19] | TAN Chaolin, ZOU Ji, WANG Di,et al. Duplex Strengthening via SiC Addition and In-situ Precipitation in Additively Manufactured Composite Materials[J]. Composites Part B:Engineering, 2022,236:109820. |
[20] | SONG Tingting, CHEN Zibin, CUI Xiangyuan, et al. Strong and Ductile Titanium-Oxygen-Iron Alloys by Additive Manufacturing[J]. Nature, 2023, 618:63-68. |
[21] | 张纪奎, 孔祥艺, 马少俊,等. 激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析[J]. 航空学报, 2021, 42(10):525430. |
ZHANG Jikui, KONG Xiangyi, MA Shaojun, et al. Laser Additive Manufacturing of High Strength and Toughness TC11 Titanium Alloy:Mechanical Properties and Application Analysis in Aircraft Primary Load-bearing Structures[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(10), 525430. | |
[22] | MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D Printing of High-strength Aluminium Alloys[J]. Nature, 2017, 549:365-369. |
[23] | LI Gan, ZHAO Chunlu, HUANG Yuye, et al. Additively Manufactured Fine-grained Ultrahigh-strength Bulk Aluminum Alloys with Nanostructured Strengthening defects[J]. Materials Today, 2024,76:40-51. |
[24] | LI Yan, FENG Zuying, HAO Liang, et al. A Review on Functionally Graded Materials and Structures via Additive Manufacturing:from Multi-scale Design to Versatile Functional Properties[J]. Advanced Materials Technologies, 2020,5(6):1900981. |
[25] | MA Zongyu, LIU Weiwei, LI Wanyang, et al. Additive Manufacturing of Functional Gradient Materials:a Review of Research Progress and Challenges[J]. Journal of Alloys and Compounds, 2024, 971:172642. |
[26] | DEMUYNCK S, ROMBOUTS M, KRUTH J P, et al. Additive Manufacturing of Multi-material Structures[J]. Materials Science & Engineering R, 2018, 134:1-23. |
[27] | ZHANG Jiahao, WANG Leilei, ZHAO Kai, et al.Thermal Analysis and Microstructure Evolution of TiC/Ti6Al4V Functionally Graded Material by Direct Energy Deposition[J]. Materials Science and Engineering:A, 2024,893 :146136. |
[28] | TIAN Xiaoxiao, ZHAO Zhi, WANG Haibin, et al. Progresses on the Additive Manufacturing of Functionally Graded Metallic Materials[J]. Journal of Alloys and Compounds,2023, 873:170687. |
[29] | GHANAVATI R, NAFFAKH-MOOSAVY H. Additive Manufacturing of Functionally Graded Metallic Materials:a Review of Experimental and Numerical Studies[J]. Journal of Materials Research and Technology, 2021, 13:1628-1664. |
[30] | KOKKINIS D, SCHAFFNER M, STUDART A R. Multimaterial Magnetically Assisted 3D Printing of Composite Materials[J]. Nature Communications, 2015,6(1):8643. |
[31] | 王晓强,文世峰,周燕,等.多材料增材制造研究现状及展望[J].电加工与模具,2022(2):1-14. |
WANG Xiaoqiang, WEN Shifeng, ZHOU Yan, et al. Research Status and Prospects of Multi-material Additive Manufacturing [J]. Electrical Processing and Mold, 2022 (2):1-14. | |
[32] | LI Neng, LIU Wei, WANG Yan, et al. Laser Additive Manufacturing on Metal Matrix Composites:a Review[J]. Chinese Journal of Mechanical Engineering, 2021, 34:38. |
[33] | JIMÉNEZ A, BIDARE P, HASSANIN H, et al. Hybrid Laser Additive Manufacturing of Metals:a Review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114, 63-96. |
[34] | BAI Yunchao, LEE Yanjin, ZHAO Cuiling, et al. Unique Cellular Microstructure-enabled Hybrid Additive and Subtractive Manufacturing of Aluminium Alloy Mirror with High Strength[J]. Journal of Materials Processing Technology, 2023, 325:118095. |
[35] | STAVROPOULOS P, BIKAS H, AVRAM O, et al. Hybrid Subtractive-additive Manufacturing Processes for High Value-added Metal Components[J]. International Journal of Advanced Manufacturing Technology, 2020, 111:645-655. |
[36] | 高凯, 王振忠, 孔刘伟, 等. 基于增减材复合制造的中空离心叶轮工艺设计[J]. 航空制造技术, 2021, 64(12):72-79. |
GAO Kai, WANG Zhenzhong, KONG Liuwei, et al. Process Design of Hollow Centrifugal Impeller Based on Additive and Subtractive Composite Manufacturing [J]. Aviation Manufacturing Technology, 2021, 64 (12):72-79. | |
[37] | TAN Chaolin, LI Runsheng, SU Jinlong, et al. Review on Field Assisted Metal Additive Manufacturing[J]. International Journal of Machine Tools and Manufacture, 2023, 189:104032. |
[38] | ZENG Chao, XUE Liutian, JIA Yun, et al. A Review of Additive Manufacturing of Metallic Materials Assisted by Electromagnetic Field Technology[J]. Journal of Manufacturing Processes, 2024, 131:920-946. |
[39] | 高海瑞, 李继康, 张振武, 等. 多场调控金属激光增材制造研究现状与展望(特邀)[J]. 中国激光, 2024, 51(10):1002306. |
GAO Hairui, LI Jikang, ZHANG Zhenwu, et al. Research Status and Prospect of Multi-field Modulated Metal Laser Additive Manufacturing(Invited)[J]. Chinese Journal of Lasers, 2024, 51(10):1002306. | |
[40] | YOON H, LIU P, PARK Y, et al. Pulsed Laser-assisted Additive Manufacturing of Ti-6Al-4V for In-situ Grain Refinement[J]. Scientific Reports, 2022, 12:21589. |
[41] | LI Xuekai, WANG Wei, WU Yihong, et al. Ultrasonic Field-assisted Metal Additive Manufacturing (U-FAAM):Mechanisms, Research and Future Directions[J]. Ultrasonics Sonochemistry, 2024, 111:107070. |
[42] | WANG Linxin, WANG Lei, FENG Qingao, et al.High Surface Quality Additive Manufacturing Process of Titanium Alloy with Composite Heat Source[J].Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2024,238(1/2):37-47. |
[43] | CHEN Y, ZHANG D, O’TOOLE P, et al. In situ Observation and Reduction of Hot-cracks in Laser Additive Manufacturing[J]. Communications Materials, 2024, 5:84. |
[44] | GU Dongdong, SHI Xinyu, POPRAWE R, et al. Material-structure-performance Integrated Laser-metal Additive Manufacturing[J]. Science, 2021, 372:1487. |
[45] | 周庆军, 严振宇, 张京京, 等. 航天运载器大型金属构件激光定向能量沉积研究及应用进展[J]. 中国激光, 2024, 51(10):1002303. |
ZHOU Qingjun, YAN Zhenyu, ZHANG Jingjing, et al. Research and Application Progress of Laser Directed Energy Deposition on Large-scale Metal Components in Aerospace [J]. Chinese Journal of Lasers, 2024, 51(10):1002303. | |
[46] | 倪江涛, 周庆军, 衣凤, 等. 激光增材制造技术发展及在航天领域的应用进展[J]. 稀有金属, 2022, 46(10):1365-1382. |
NI Jiangtao, ZHOU Qingjun, YI Feng, et al. Development of Laser Additive Manufacturing Technology and Its Application Progress in Aerospace Field[J]. Chinese Journal of Rare Metals, 2022, 46(10):1365-1382 | |
[47] | TAN Chaolin, WENG Fei, SUI Shang, et al. Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170:103804. |
[48] | 陈超越,王江,王瑞鑫,等.航空发动机及燃气轮机用关键材料的激光增材制造研究进展[J]. 科技导报, 2023, 41(5):34-48. |
CHEN Chaoyue, WANG Jiang, WANG Ruixin, et al.Research Progress and Prospect of Additive Manufacturing of Key Materials for Aeroengines and Gas Turbines[J]. Science & Technology Review, 2023, 41(5):34-48. | |
[49] | COLORADO H A, CARDENAS C A, GUTI-ERREZ-VELAZQUEZ E I,et al. Additive Manufacturing in Armor and Military Applications:Research, Materials, Processing Technologies, Perspectives, and Challenges[J].Journal of Materials Research and Technology,2023,27:3900-3913. |
[50] | CHEN Liangyu, LIANG Shunxing, LIU Y, et al. Additive Manufacturing of Metallic Lattice Structures:Unconstrained Design, Accurate Fabrication, Fascinated Performances, and Challenges[J]. Materials Science and Engineering:R:Reports, 2021, 146:100648. |
[51] | BORIKAR G P, PATIL A R, KOLEKAR S B. Additively Manufactured Lattice Structures and Materials:Present Progress and Future Scope[J]. International Journal of Precision Engineering and Manufacturing.2023,24:2133-2180. |
[52] | MANTOVANI S, GIACALONE M, MERULLA A, et al.Effective Mechanical Properties of AlSi7Mg Additively Manufactured Cubic Lattice Structures[J].3D Printing and Additive Manufacturing,2022,9(4):326–336. |
[53] | BARI K.Design, Simulation, and Mechanical Testing of 3D-printed Titanium Lattice Structures[J].Journal of Composites Science,2023, 7(1): 32. |
[54] | CAIAZZO F, ALFIERI V, CAMPANELLI S L, et al. Additive Manufacturing and Mechanical Testing of Functionally-graded Steel Strut-based Lattice Structures[J]. Journal of Manufacturing Processes, 2022,83:717-728. |
[55] | OBADIMU S O, KOUROUSIS K I.Compressive Behaviour of Additively Manufactured Lattice Structures:a Review[J].Aerospace, 2021, 8(8):207. |
[56] | 宋波,张磊,王晓波,等. 面向航空航天的增材制造超材料的研究现状及发展趋势[J]. 航空制造技术,2022,65(14):22-33. |
SONG Bo, ZHANG Lei, WANG Xiaobo, et al. Research Status and Development Trend of Additive Manufacturing Metamaterials for Aerospace [J]. Aeronautical Manufacturing Technology, 2022, 65(14):22-33. | |
[57] | FAN Junxiang, ZHANG Lei, WEI Shuaishuai,et al.A Review of Additive Manufacturing of Metamaterials and Developing Trends[J].Materials Today, 2021, 50:303-328. |
[58] | 吴文旺, 夏热. 轻质点阵超结构设计及多功能力学性能调控方法[J].力学进展, 2022, 52(3):673-718. |
WU Wenwang, XIA Re. Design of Lightweight Lattice Meta-structures and Approaches to Manipulate Their Multi-functional Mechanical Properties[J]. Advances in Mechanics, 2022, 52(3):673-718. | |
[59] | KORKMAZ M, GUPTA M, ROBAK G, et al. Development of Lattice Structure with Selective Laser Melting Process:a State of the Art on Properties, Future Trends and Challenges[J].Journal of Manufacturing Processes,2022,81:1040-1063. |
[60] | 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3):656-689. |
REN Xin, ZHANG Xiangyu, XIE Yimin. Research Progress in Auxetic Materials and Structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3):656-689. | |
[61] | BLAKEY-MILNER B, GRADL P, SNEDDEN G,et al.Metal Additive Manufacturing in Aerospace:a Review[J].Materials & Design, 2021(12):110008. |
[62] | MACONACHIE T, LEARY M, LOZANOVSKI B, et al. SLM Lattice Structures:Properties, Performance, Applications and Challenges[J]. Materials & Design, 2020, 189:108137. |
[63] | LIU Jiayang, LI Shu.Efficient Phononic Band Gap Optimization in Two-dimensional Lattice Structures Using Extended Multiscale Finite Element Method[J].Structural and Multidisciplinary Optimization, 2024, 67(9):1-23. |
[64] | 张啸雨,刘畅,施丽铭,等.蒙皮点阵一体化支撑结构的移动可变形组件优化设计及空间站应用[J].固体力学学报, 2022, 43(5):551-563. |
ZHANG Xiaoyu, LIU Chang, SHI Liming, et al. Optimization Design and Space Station Application of Mobile Morphable Component-based Skin-lattice Integrated Support Structure[J]. Acta Mechanica Solida Sinica, 2022, 43(5):551-563. | |
[65] | 李家雨, 付宇彤, 李元庆, 等. 增材制造仿生结构的力学性能优化及其功能设计研究进展[J]. 复合材料学报, 2024, 41(9):4435-4456. |
LI Jiayu, FU Yuhong, LI Yuanqing, et al. Research Progress on Mechanical Performance Optimization and Functional Design of Additive Manufactured Biomimetic Structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9):4435-4456. | |
[66] | KANISHKA K, ACHERJEE B. Revolutionizing Manufacturing:a Comprehensive Overview of Additive Manufacturing Processes, Materials, Developments, and Challenges[J]. Journal of Manufacturing Processes, 2023, 107:574-619. |
[67] | GÜLER O V, GÜREL B, KURTULUŞ K,et al.Thermo-hydraulic Efficiency of Lung-inspired Compact Plate Heat Exchangers Made Using Additive Manufacturing Techniques with Steel, Aluminum and Titanium Powders[J].Chemical Engineering Science, 2024,283:119378. |
[68] | 迟百宏,刘家鑫,陆宽,等. 电磁隐身-水下隔声-超疏水减阻一体化超材料结构[C]∥第三届航空航天增材制造大会优秀论文集. 北京:航天科技创新研究院,2023:6. |
CHI Baihong, LIU Jiaxin, LU Kuan, et al. Integrated Metamaterial Structures for Electromagnetic Stealth, Underwater Acoustic Isolation, and Superhydrophobic Drag Reduction[C]∥Proceedings of the 3rd Aeronautical and Astronautical Additive Manufacturing Conference. Beijing:Aerospace Science and Technology Innovation Institute, 2023:6. | |
[69] | YUAN Luhao, GU Dongdong, LIU Xin, et al. Design and Additive Manufacturing of Bionic Hybrid Structure Inspired by Cuttlebone to Achieve Superior Mechanical Properties and Shape Memory Function[J]. International Journal of Extreme Manufacturing, 2024,6:055001. |
[70] | LIN Kaijie, YUAN Luhao, GU Dongdong.Influence of Laser Parameters and Complex Structural Features on the Bio-inspired Complex Thin-wall Structures Fabricated by Selective Laser Melting[J]. Journal of Materials Processing Technology,2019:267:34-43. |
[71] | XIE Deqiao, LV Fei, YANG Youwen, et al. A Review on Distortion and Residual Stress in Additive Manufacturing[J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers, 2022,1:100039. |
[72] | 颜江涛, 郑雪鹏, 石张平,等. 金属增材制造检测技术与质量控制研究进展[J].无损检测, 2024,46(9):90-100. |
YAN Jiangtao, ZHENG Xuepeng, SHI Zhangping, et al. Research Progress on Detection Technologies and Quality Control for Metal Additive Manufacturing[J]. Nondestructive Testing, 2024, 46(9):90-100. | |
[73] | LEUNG C L A, MARUSSI S, ATWOOD R C, et al. In Situ X-ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing[J]. Nature Communications, 2018, 9(1):1355. |
[74] | 汤海波,吴宇,张述泉,等.高性能大型金属构件激光增材制造技术研究现状与发展趋势[J].精密成形工程, 2019, 11(4):58-63. |
TANG Haibo, WU Yu, ZHANG Shuquan, et al. Research Status and Development Trends of Laser Additive Manufacturing Technology for High-performance Large-scale Metal Components[J]. Precision Forming Engineering, 2019, 11(4):58-63. | |
[75] | TIAN Xiaoyong, WU Lingling, GU Dongdong,et al.Roadmap for Additive Manufacturing:toward Intellectualization and Industrialization[J].Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers, 2022, 1(1):100014. |
[76] | TIAN Xiaoyong, LI Dichen, LIAN Qin, et al. Additive Manufacturing of Integrated Micro/Macro Structures Driven by Diversified Functions-30 Years of Development of Additive Manufacturing in Xi'an Jiaotong University[J]. Additive Manufacturing Frontiers, 2024, 3(2):200140. |
[1] | 陈启迪, 胡小龙, 吝敏, 孙晓霞, 张涛, 周志雄. 超精密加工误差补偿技术研究综述[J]. 中国机械工程, 2023, 34(03): 253-268. |
[2] | 房丰洲. 原子及近原子尺度制造——制造技术发展趋势[J]. 中国机械工程, 2020, 31(09): 1009-1021. |
[3] | 赵德陈1,2,3;林峰1,2,3. 金属粉末床熔融工艺在线监测技术综述[J]. 中国机械工程, 2018, 29(17): 2100-2110,2118. |
[4] | 李垚1;朱才朝1;陶友传2;宋朝省1;谭建军1. 风电机组可靠性研究现状与发展趋势[J]. 中国机械工程, 2017, 28(09): 1125-1133. |
[5] | 杨泽斌, 孙晓东, 朱熀秋, 刘贤兴. 无轴承异步电机关键技术与发展趋势[J]. 中国机械工程, 2013, 24(12): 1695-1703. |
[6] | 刘飞, 王秋莲. 机械制造系统能效评价的特点、研究现状及发展趋势[J]. 中国机械工程, 2013, 24(11): 1550-1556. |
[7] | 孙晓东, 朱熀秋, 杨泽斌. 无轴承永磁同步电机技术综述及其发展趋势探讨[J]. 中国机械工程, 2012, 23(17): 2128-2135. |
[8] | 赵升吨, 赵承伟, 王君峰, 林文捷. 现代旋压设备发展趋势的探讨[J]. 中国机械工程, 2012, 23(10): 1251-1255. |
[9] | 杨华勇;丁斐;欧阳小平;陆清;. 大型客机液压能源系统[J]. J4, 2009, 20(18): 0-2148. |
[10] | 吴运新;隆志力;韩雷;钟掘;. 芯片键合换能系统研究现状分析[J]. J4, 2008, 19(11): 0-1269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||