中国机械工程 ›› 2025, Vol. 36 ›› Issue (07): 1505-1511.DOI: 10.3969/j.issn.1004-132X.2025.07.013

• 机械基础工程 • 上一篇    下一篇

基于随机森林算法的行星滚柱丝杠副摩擦力矩预测

徐洋;祖莉*;李伟龙;刘晓玲;何建樑;刘俊   

  1. 南京理工大学机械工程学院,南京,210094

  • 出版日期:2025-07-25 发布日期:2025-08-29
  • 作者简介:徐洋,女,1998年生,硕士研究生。研究方向为伺服精密传动、设备故障诊断与预测。发表论文2篇。
  • 基金资助:
    国家重点研发计划(2022YFB3402103)

Prediction of Frictional Torques of Planetary Roller Screw Pairs Based on Random Forest Algorithm

XU Yang;ZU Li*;LI Weilong;LIU Xiaoling;HE Jianliang;LIU Jun   

  1. School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094
  • Online:2025-07-25 Published:2025-08-29

摘要: 摩擦力矩增大会加剧行星滚柱丝杠副磨损,严重影响其使用及寿命。探讨了利用机器学习算法预测行星滚柱丝杠副摩擦力矩的可行性,分析了行星滚柱丝杠副摩擦力矩与磨损状态的关系。采用基于随机森林、支持向量回归和BP神经网络的机器学习算法预测了不同转数行星滚柱丝杠副的摩擦力矩变化。研究结果表明,基于随机森林算法对行星滚柱丝杠副摩擦力矩的预测准确率达到97%。

关键词: 行星滚柱丝杠, 摩擦力矩, 机器学习, 随机森林算法

Abstract: The increase in frictional torques of planetary roller screw pairs led increased wear of planetary roller screw mechanisms(PRSM), which seriously affected the use and service life of PRSM. The feasibility of using ML algorithms to predict the frictional torques of PRSM was explored, and the relationship between PRSM frictional torques and wear states was analyzed. Random forest algorithm, support vector regression, and BP neural network were used to predict the changes in frictional torques of PRSM at different rotational speeds. The results demonstrate that the random forest algorithm achieves the prediction accuracy of 97% for the frictional torques of PRSM.

Key words: planetary roller screw, frictional moment, machine learning(ML), random forest algorithm

中图分类号: