[1]SIDDIQUEE M N, SIVARAMAKRISHNAN K , WU Y, et al. A Statistical Approach Dealing with Multicollinearity among Predictors in Microfluidic Reactor Operation to Control Liquidphase Oxidation Selectivity[J]. Reaction Chemistry & Engineering, 2018, 3(6):972-990.
[2]KATRUTSA A, STRIJOV V. Comprehensive Study of Feature Selection Methods to Solve Multicollinearity Problem According to Evaluation Criteria[J]. Expert Systems with Applications, 2017, 76 1-11.
[3]王珂瑶, 王惠文, 赵青, 等. 一种修正的马氏距离判别法[J]. 北京航空航天大学学报, 2022, 48(5):824-830.
WANG Keyao, WANG Huiwen, ZHAO Qing, et al. A Modified Mahalanobis Distance Discriminant Method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022,48(5):824-830.
[4]JING G, YUNFENG Z. Parameter Estimation Approaches to Tackling Measurement Error and Multicollinearity in Ordinal Probit Models[J]. Communications in Statistics Theory and Methods, 2020, 49(16):3835-3859.
[5]JING T, YUWEI Z, FENGLING Z, et al. A Novel Intelligent Method for Intershaft Bearingfault Diagnosis Based on Hierarchical Permutation Entropy and LLE-RF[J]. Journal of Vibration and Control, 2023, 29(23/24):5357-5372.
[6]XIANG F, ZHAO Y, ZHANG M, et al. Ensemble Learning Based Stability Improvement Method for Feature Selection towards Performance Prediction[J]. Journal of Manufacturing Systems, 2024, 74 55-67.
[7]许鸿伟,张洁,吕佑龙,等. 基于改进的连续型深度信念网络的晶圆良率预测方法[J]. 计算机集成制造系统, 2020, 26(9):2388-2395.
XU Hongwei, ZHANG Jie, LYU Youlong, et al. Wafer Yield Prediction Method Based on Improved Continuoustype Deep Belief Networks[J]. Computer Integrated Manufacturing System, 2020,26(9):2388-2395.
[8]阴艳超,施成娟,邹朝普,等. 基于深度时间卷积神经网络与迁移学习的流程制造工艺过程质量时序关联预测[J]. 中国机械工程, 2023, 34(14):1659-1671.
YIN Yanchao, SHI Chengjuan, ZOU Chaopu, et al. Process Manufacturing Process Quality Timing Correlation Prediction Based on Deep Temporal Convolutional Neural Network and Transfer Learning[J]. China Mechanical Engineering, 2023,34(14):1659-1671.
[9]WIBOWO A. Hybrid Kernel Principal Component Regression and Penalty Strategy of Multiple Adaptive Genetic Algorithms for Estimating Optimum Parameters in Abrasive Waterjet Machining[J]. Applied Soft Computing, 2018, 62 1102-1112.
[10]钟杰,罗冲,张恒, 等. 基于相关性参数选择的飞行数据异常检测[J]. 北京航空航天大学学报, 2024, 50(5):1738-1745.
ZHONG Jie, LUO Chong, ZHANG Heng, et al. Abnor-mal Detection in Flight Data Based on Correlation Parameter Selection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(5):1738-1745.
[11]HE Zhongwei. Interval Observer-based Compensators Design for Linear Systems with Uncertain Timevarying Parameters[J]. Transactions of the Institute of Measurement and Control, 2023, 45(16):3247-3253.
[12]周菲. Logistic回归多重共线性的诊断与改进及其在医学中的应用[D]. 兰州:兰州大学, 2011.
ZHOU Fei. Logistic Diagnosis and Improvement of Regression Multicollinearity and Its Application in Medicine[D]. Lanzhou:Lanzhou University, 2011.
[13]WIBOWO A, DESA I M. Kernel Based Regression and Genetic Algorithms for Estimating Cutting Conditions of Surface Roughness in End Milling Machining Process[J]. Expert Systems with Applications, 2012, 39(14):11634-11641.
[14]刘明,杜建强,李郅琴, 等. 融合LASSO的近似马尔科夫毯特征选择方法[J]. 计算机工程与应用, 2024, 60(8):121-130.
LIU Ming, DU Jianqiang, LI Zhiqin, et al. Fuses LASSO's Approximate Markov Blanket Feature Selection Method[J]. Computer Engineering and Applications, 2024, 60(8):121-130.
[15]张潞瑶,季伟东,程昊. 基于LLE降维思想的自然计算方法[J]. 系统仿真学报, 2020, 32(10):1943-1955.
ZHANG Luyao, JI Weidong, CHENG Hao. A Natural Computational Method Based on the Idea of LLE Dimension Reduction[J]. Journal of System Simulation, 2020,32(10):1943-1955.
[16]王全. 弱刚性铝合金零件加工参数优化研究[D]. 兰州:兰州理工大学, 2022.
WANG Quan. Study on Machining Parameter Optimization of Weak Rigid Aluminum Alloy Parts[D]. Lanzhou:Lanzhou University of Technology, 2022.
|