中国机械工程 ›› 2025, Vol. 36 ›› Issue (06): 1238-1246.DOI: 10.3969/j.issn.1004-132X.2025.06.011

• 智能制造 • 上一篇    下一篇

基于局部线性嵌入的制造过程多重共线性参数特征选择

胡胜1,2*;高冰冰1;张溪1;刘登基1   

  1. 1.西安工程大学机电工程学院,西安,710048
    2.湖北工业大学现代制造质量工程湖北省重点实验室,武汉,430068

  • 出版日期:2025-06-25 发布日期:2025-08-04
  • 作者简介:胡胜*,男,1988 年生,博士、副教授。研究方向为智能制造质量控制、质量管理与质量工程。Email:husheng@xpu.edu.cn。
  • 基金资助:
    国家自然科学基金(72001166);教育部人文社科基金(24YJC630073);现代制造质量工程湖北省重点实验室开放基金(KFJJ-2024007);陕西省自然科学基础研究计划(2025JC-YBMS-824,2022JQ-721)

Multicollinearity Parameter Feature Selection for Manufacturing Processes Based on LLEs

HU Sheng1,2*;GAO Bingbing1;ZHANG Xi1;LIU Dengji1   

  1. 1.School of Mechanical Engineering and Electrical Engineering,Xian Polytechnic University,
    Xian,710048
    2.Hubei Key Laboratory of Modern Manufacturing Quality Engineering,Hubei University of
    Technology,Wuhan,430068

  • Online:2025-06-25 Published:2025-08-04

摘要: 针对制造过程中参数众多易引发多重共线性,致使质量指标预测不准确的问题,提出了一种基于局部线性嵌入(LLE)的制造过程多重共线性参数特征选择方法。首先诊断制造过程参数的多重共线性问题,再用最小绝对收缩和选择算子(LASSO)回归方法将其消除;然后用LLE算法对LASSO回归后的参数做特征选择,获得彼此独立的特征空间,并将其输入到鲸鱼优化支持向量机模型(WOA-SVM)中验证所提算法的参数特征选择效果;最后通过案例分析验证了所提方法的有效性。结果显示,与原始数据相比,采用所提出的方法能够在更低的特征空间维度下获取更精确的预测效果,相关系数值高达0.9702,特征选择的准确率增加了24.989%。

关键词: 制造过程, 多重共线性, 局部线性嵌入, 特征选择

Abstract: In manufacturing processes, a large number of parameters were easily caused to have multicollinearity, which led to problems such as inaccurate prediction of quality indicators. To address these problems, a feature selection method for multicollinear parameters in the manufacturing processes was proposed based on LLE. Firstly, the multicollinearity of the manufacturing process parameters was diagnosed, and then the multicollinearity was eliminated by using the least absolute shrinkage and selection operator(LASSO) regression. Secondly, the LLE algorithm was used to perform feature selection on the parameters after LASSO regression to obtain independent feature spaces, and they were input into the whale optimization algorithm-support vector machine(WOA-SVM) model to verify the parameter feature selection effectiveness of the proposed algorithm. Finally, the effectiveness of the proposed method was verified through case analysis. The results show that compared with the original data, the proposed method may obtain more accurate prediction results under a lower-dimensional feature space, the correlation coefficient value is up to 0.9702, and the accuracy of feature selection increases by 24.989%.

Key words: manufacturing process, multicollinearity, local linear embedding(LLE), feature selection

中图分类号: