中国机械工程 ›› 2025, Vol. 36 ›› Issue (03): 604-613.DOI: 10.3969/j.issn.1004-132X.2025.03.024

• 工程前沿 • 上一篇    下一篇

基于变论域的高速行驶智能汽车模糊模型预测控制方法研究

何洋;李刚*;余孝楠   

  1. 辽宁工业大学汽车与交通工程学院,锦州,121001

  • 出版日期:2025-03-25 发布日期:2025-04-23
  • 作者简介:何洋,男,1982年生,副教授。研究方向为智能驾驶技术。E-mail:heyang121000@163.com。
  • 基金资助:
    国家自然科学基金(51675257);辽宁省自然科学基金(2022-MS-376);2024年辽宁省教育厅高校基本科研项目(LJ212410154021)

Research on Fuzzy Model Predictive Control Method for High Speed Intelligent Vehicles Based on Variable Universe

HE Yang;LI Gang*;YU Xiaonan   

  1. School of Automobile and Traffic Engineering,Liaoning University of Technology,Jinzhou,
    Liaoning,121001

  • Online:2025-03-25 Published:2025-04-23

摘要: 为提高高速行驶智能汽车的轨迹跟踪能力和行驶稳定性,提出一种变论域模糊模型预测控制(VUFMPC)方法。在传统的智能汽车模型预测控制(MPC)方法基础上,将输出误差及其变化率作为输入,误差权重和控制增量的调整因子作为输出,建立模糊模型预测控制器(FMPC)。针对模糊论域无法自适应调整的问题,引入变论域模糊控制(VUFC)方法,根据输出误差自适应调整FMPC的论域。采用硬件在环试验方法进行对比分析。试验结果表明:相较于MPC和FMPC,VUFMPC的最大跟踪误差减小78.8%和53.6%,均值误差减小38.1%和31.6%,横向速度优化量分别为52.3%~50.7%和33.5%~ 30.9%。VUFMPC使高速行驶的智能汽车轨迹跟踪误差更小,行驶更稳定。

关键词: 智能汽车, 轨迹跟踪, 变论域, 预测控制

Abstract: In order to improve the ability of trajectory tracking and driving stability of high speed intelligent vehicles, a variable universe fuzzy model predictive control method(VUFMPC) was proposed. Based on the traditional method of trajectory tracking model predictive control (MPC) of intelligent vehicles, a fuzzy model predictive controller(FMPC) was established by taking the output errors and the rate of change as inputs, and the adjustment factors of error weight and control increment as outputs. For the universe inability to adaptively adjust, variable universe fuzzy control method (VUFC) was introduced to adaptively adjust the universe of FMPC based on output errors. Finally, this method was verified through hand-in-loop experiments. The experimentd results show that compared to MPC and FMPC, the maximum tracking error is reduced by 78.8% and 53.6%, the average tracking error is reduced by 38.1% and 31.6%, the optimization quantity of lateral speedy is in 52.3%~50.7% and 33.5%~30.9% respectively. VUFMPC reduces the tracking errors and makes driving more stable for a high speed intelligent vehicles.

Key words: intelligent vehicle, trajectory tracking, variable universe, predictive control

中图分类号: