[1]王文健,刘启跃. 轮轨黏着行为与增黏[M]. 北京:科学出版社,2017.
WANG Wenjian, LIU Qiyue. Wheel-rail Adhesion Behavior and Adhesion Increase[M]. Beijing:Science Press, 2017.
[2]师陆冰. 轮轨界面硬质颗粒增黏与损伤行为研究[D]. 成都:西南交通大学,2020.
SHI Lubing. Study on the Adhesion Enhancement and Damage Behaviors of Wheel/Rail in the Application of Hard Particles[D]. Chengdu:Southwest Jiaotong University, 2020.
[3]沈明学,李圣鑫,余梦,等. 高寒地区列车遭遇暖湿气流后轮轨界面黏着与车轮损伤响应行为研究[J]. 中国机械工程,2022,33(12):1504-1511.
SHEN Mingxue, LI Shengxin, YU Meng,et al. Response Behavior of Wheel-rail Interface Adhesion and Damage after Wheels Encountering Warm and Humid Airflow during Trains through Tunnels in Frigid Regions[J]. China Mechanical Engineering, 2022, 33(12):1504-1511.
[4]LOGSTON C F, ITAMI G S. Locomotive Friction-creep Studies[J]. Journal of Engineering for Industry, 1980, 102(3):275-281.
[5]WANG W J, ZHANG H F, WANG H Y, et al. Study on the Adhesion Behavior of Wheel/Rail under Oil, Water and Sanding Conditions[J]. Wear, 2011, 271(9/10):2693-2698.
[6]黄新成,肖爱玲. 跃移层内沙颗粒空中碰撞的模型仿真[J]. 计算机仿真,2014,31(11):245-248.
HUANG Xincheng, XIAO Ailing. Simulation Model of Collision for Sand Particles in Saltation Layer[J]. Computer Simulation, 2014, 31(11):245-248.
[7]LEWIS S, ANTONIA B, ALBERTO R D, et al. Application of Coarse-graining for Large Scale Simulation of Fluid and Particle Motion in Spiral Jet Mill by CFD-DEM[J]. Powder Technology, 2022, 411:117962.
[8]LEWIS S R, RILEY S, FLETCHER D I, et al. Optimization of a Railway Sanding System for Optimal Grain Entrainment into the Wheel-rail Contact[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal Rail and Rapid Transit, 2016, 232:43-62.
[9]王文健,岳子恒,向鹏程,等. 列车轮轨增黏撒砂过程试验模拟与撒砂效果研究[J]. 机械工程学报,2023,59(22):424-432.
WANG Wenjian, YUE Ziheng, XIANG Pengcheng, et al. Study on Experimental Simulation of Sanding Process for Train Wheel-rail Improving Adhesion and Sanding Effect[J]. Journal of Mechanical Engineering, 2023, 59(22):424-432.
[10]ARIAS-CUEVAS O, LI Z, LEWIS R, et al. Laboratory Investigation of Some Sanding Parameters to Improve the Adhesion in Leaf-contaminated Wheel-rail Contacts[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail Rapid Transit, 2010, 224(3):139-157.
[11]ARIAS-CUEVAS O, LI Z, LEWIS R. Investigating the Lubricity and Electrical Insulation Caused by Sanding in Dry Wheel-rail Contacts[J]. Tribology Letters, 2010, 37(3):623-635.
[12]AISHWARYA G, SHELDON I G. Computational Fluid Dynamics-discrete Element Method Simulation of Locomotive Sanders[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail Rapid Transit, 2021, 235(1):1-10.
[13]向鹏程. 列车撒砂过程模拟检测装置设计及试验研究[D]. 成都:西南交通大学,2021.
XIANG Pengcheng. Design of Simulation Test Device for Train Sanding Process and Experimental Research[D]. Chengdu:Southwest Jiaotong University, 2021.
[14]ROBERTS J. Particles Impingement on a Moving Substrate[D]. Columbia:University of Northern British Columbia, 2018.
[15]张振先,谭江,黄双超,等. 复杂运行环境下高速轮轨最佳撒砂增黏策略试验[J]. 中国铁道科学,2020,41(2):123-130.
ZHANG Zhenxian, TAN Jiang, HUANG Shuang-chao,et al. Experimental Study on Optimum Sanding and Adhesion Enhancement Strantegy for High Speed Wheel and Rail under Complicated Operation Environments[J]. China Railway Science, 2020, 41(2):123-130.
[16]魏恒远,王晓梅. 粉末静电喷涂工艺探讨[J]. 上海涂料,2009,47(9):41-44.
WEI Hengyuan, WANG Xiaomei. Discussion on Powder Electrostatic Spraying Process[J]. Shanghai Coatings, 2009, 47(9):41-44.
[17]黄启芮,张沭玥,王文健,等. 钢轨轨面静电喷涂SiO2增黏颗粒行为与利用率研究[J]. 表面技术,2023,52(6):196-207.
HUANG Qirui, ZHANG Shuyue, WANG Wenjian, et al. Behaviour and Utilization Rate of SiO2 Particles by Electrostatic Spraying on Rail Surface[J]. Surface Technology, 2023, 52(6):196-207.
[18]白志刚. 流体力学[M]. 天津:天津大学出版社,2019.
BAI Zhigang. Hydrodynamics[M]. Tianjin:Tianjin University Press, 2019.
[19]岑可法,樊建人. 工程气固多相流动的理论及计算[M]. 杭州:浙江大学出版社,1990.
CEN Kefa, FAN Jianren. Theory and Calculation of Engineering Gas Solid Multiphase Flow[M]. Hangzhou:Zhejiang University Press, 1990.
[20]胡菊华. 基于残差分析的线性回归模型的诊断与修正[J]. 统计与决策,2019(24):5-8.
HU Juhua. Diagnosis and Correction of Linear Regression Models Based on Residual Analysis[J]. Statistics and Decision, 2019(24):5-8.
[21]郭全国,赵立安,陈子豪,等. 基于多元回归分析方法的MJS加固质量与地表沉降分析[C]∥2022年全国工程建设行业施工技术交流会. 北京:施工技术出版社,2022:152-156.
GUO Quanguo, ZHAO Lian, CHEN Zihao, et al. Grouting Effect of MJS and Analysis of Ground Settlement Based on Multivariate Regression Analysis[C]∥2022 National Engineering Construction Industry Construction Technology Exchange Conference. Beijing:Construction Technology Press, 2022:152-156.
[22]杨延栋,孙振川,张兵,等. 基于多个隧道掘进机工程数据回归分析的滚刀磨损评价方法[J]. 中国机械工程,2021,32(11):1370-1376.
YANG Yandong, SUN Zhenchuan, ZHANG Bing, et al. Disc Cutter Wear Evaluation Method Based on Regression Analysis of Multiple TBM Engineering Data[J]. China Mechanical Engineering, 2021, 32(11):1370-1376.
[23]宗群,窦立谦,孙连坤,等. 基于残差分析方法的模型检验[C]∥第二十七届中国控制会议. 北京:北京航空航天大学出版社,2008:252-255.
ZONG Qun, DOU Liqian, SUN Liankun, et al. Model Validation Based on Residuals Analysis Method[C]∥ The 27th China Control Conference. Beijing:Beihang University Press, 2008:252-255.
[24]白玲,韩晨,徐云峰,等. 基于不同曳力模型的鼓泡流化床CFD-DEM数值模拟与试验研究[J]. 排灌机械工程学报,2022,40(1):49-54.
BAI Ling, HAN Chen, XU Yunfeng, et al. Numerical Simulation and Experimental Study of CFD-DEM in Bubbling Fluidized Bed Based on Different Drag Models[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(1):49-54.
[25]ZHOU L, LYU W N, BAI L, et al. CFD-DEM Study of Gas-solid Flow Characteristics in a Fluidized Bed with Different Diameter of Coarse Particles[J]. Energy Reports, 2022, 8:2376-2388.
[26]任永鑫. 稠密气固分选流化床加重质颗粒碰撞粘附特性试验研究[D]. 徐州:中国矿业大学,2022.
REN Yongxin. Experimental Study on Collision Adhesion Characteristics of Medium Solid in Dense Gas-Solid Separation Fluidized Bed[D]. Xuzhou:China University of Mining and Technology, 2022.
[27]刘阳,李国辉. 轴对称突扩稀疏气固流动的双流体大涡模拟[J]. 中国机械工程,2009,20(17):2112-2115.
LIU Yang, LI Guohui. A Two-fluid Large-eddy Simulation of Axi-symmetric Sudden Expansion Dilute Gas-particle Flows[J]. China Mechanical Engineering, 2009, 20(17):2112-2115.
[28]GILFANOV A K, ZARIPOV T S, SAZHIN S S, et al. The Analysis of Particle Number Densities in Dilute Gas-particle Flows:the Eulerian and Lagrangian Methods[J]. Lobachevskii Journal of Mathematics, 2023, 43(10):2938-2947.
|