[1]尚德广, 王德俊. 多轴疲劳强度[M]. 北京:科学出版社, 2007.
SHANG Deguang, WANG Dejun. Multiaxial Fatigue Strength[M]. Beijing:Science Press, 2007.
[2]WANGR Q, LI D, HU D Y, et al. A Combined Critical Distance and Highly-stressed-volume Model to Evaluate the Statistical Size Effect of the Stress Concentrator on Low Cycle Fatigue of TA19 Plate[J]. International Journal of Fatigue, 2017, 95:8-17.
[3]LUO P, YAO W X, SUSMEL L, et al. A Survey on Multiaxial Fatigue Damage Parameters under Non-proportional Loadings[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(9):1323-1342.
[4]HE N, FENG P F, LI Z W, et al. Fatigue Life Prediction of Xentrifugal Fan Blades in the Ventilation Cooling System of the High-speed-train[J]. Engineering Failure Analysis, 2021, 124:105373.
[5]LIU J H, PAN X M, LI Y T, et al. A Two-point Method for Multiaxial Fatigue Life Prediction[J]. Acta Mechanica Solida Sinica, 2022, 35(2):316-327.[LinkOut]
[6]GAO D Y, YAO W X, WEN W D, et al. Critical Distance Model for the Fatigue Life Analysis under Low-velocity Impacts of Notched Specimens[J]. International Journal of Fatigue, 2021, 146:106164.
[7]陆山, 王春光, 陈军. 任意最大应力梯度路径轮盘模拟件设计方法[J]. 航空动力学报, 2010, 25(9):2000-2005.
LU Shan, WANG Chunguang, CHEN Jun. Design Method of Imitation Specimen for Engine Disk with any Maximum Stress Gradient Path[J]. Journal of Aerospace Power, 2010, 25(9):2000-2005.
[8]姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003.
YAO Weixing. Fatigue Life Prediction of Structures[M]. Beijing:National Defense Industry Press, 2003.
[9]熊晗懿, 郑云, 侯兆新. 基于局部应力应变法的钢结构疲劳裂纹形成寿命预测[J]. 钢结构, 2019, 34(6):25-28.
XIONG Hanyi, ZHENG Yun, HOU Zhaoxin. Fatigue Crack Initiation Life Prediction of Steel Structure Based on Local Stress-strain Method[J]. Steel Construction, 2019, 34(6):25-28.
[10]SUSMEL L, TAYLOR D. A Novel Formulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components in the Medium-cycle Fatigue Regime[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 30(7):567-581.
[11]LIAO D, ZHU S P, CORREIA J A, et al. Recent Advances on Notch Effects in Metal Fatigue:a Review[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(4):637-659.
[12]申杰斌, 唐东林. 一种考虑应力梯度的疲劳寿命预测方法[J]. 中国机械工程, 2017, 28(1):40-44.
SHEN Jiebin, TANG Donglin. Predicting Method for Fatigue Life with Stress Gradient[J]. China Mechanical Engineering, 2017, 28(1):40-44.
[13]MARQUES J M, MOUREK M, PAPUGA J, et al. A Probabilistic Stress-life Model Supported by Weakest Link Principle and Highly-stressed Volume/Surface Area Concepts[J]. International Journal of Fatigue, 2024, 178:108006.
[14]张小元, 张克实, 黄世鸿, 等. Q235结构钢低周多轴疲劳寿命评估方法的实验研究[J]. 广西大学学报(自然科学版), 2013, 38(4):982-990.
ZHANG Xiaoyuan, ZHANG Keshi, HUANG Shihong, et al. Experimental Research on Life Evaluation for Low Cycle Multiaxial Fatigue of Q235 Steel[J]. Journal of Guangxi University (Natural Science Edition), 2013, 38(4):982-990.
[15]YU Z Y, ZHU S P, LIU Q, et al. A New Energy-critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades[J]. Materials, 2017, 10(5):513.
[16]GATES N R, FATEMI A. On the Consideration of Normal and Shear Stress Interaction in Multiaxial Fatigue Damage Analysis[J]. International Journal of Fatigue, 2017, 100:322-336.
[17]GAN L, WU H, ZHONG Z. Use of an Energy-based/critical Plane Model to Assess Fatigue Life under Low-cycle Multiaxial Cycles[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(12):2694-2708.
[18]刘俭辉, 华飞龙, 段红燕, 等. 考虑应力梯度及附加强化的多轴疲劳寿命预测[J]. 华中科技大学学报(自然科学版), 2021, 49(9):59-63.
LIU Jianhui, HUA Feilong, DUAN Hongyan, et al. Multiaxial Fatigue Life Prediction Method Considering Stress Gradient and Strengthening Effect[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(9):59-63.
[19]LIU J H, RAN Y, XIE L J, et al. Multiaxial Fatigue Life Prediction Method of Notched Specimens Considering Stress Gradient Effect[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(5):1406-1419.
[20]LIAO D, ZHU S P, QIAN G. Multiaxial Fatigue Analysis of Notched Components Using Combined Critical Plane and Critical Distance Approach[J]. International Journal of Mechanical Sciences, 2019, 160:38-50.
[21]LIU B W, YAN X Q. An Extension Research on the Theory of Critical Distances for Multiaxial Notch Fatigue Finite Life Prediction[J]. International Journal of Fatigue, 2018, 117:217-229.
[22]TAYLOR D. Geometrical Effects in Fatigue:A Unifying Theoretical Model[J]. International Journal of Fatigue, 1999, 21(5):413-420.
[23]BELLETT D, TAYLOR D, MARCO S, et al. The Fatigue Behaviour of Three-dimensional Stress Concentrations[J]. International Journal of Fatigue, 2005, 27(3):207-221.
[24]王延荣, 李宏新, 袁善虎, 等. 考虑应力梯度的缺口疲劳寿命预测方法[J]. 航空动力学报, 2013, 28(6):1208-1214.
WANG Yanrong, LI Hongxin, YUAN Shanhu, et al. Method for Notched Fatigue Life Prediction with Stress Gradient[J]. Journal of Aerospace Power, 2013, 28(6):1208-1214.
[25]BOLCHOUN A, SONSINO C M, KAUFMANN H, et al. Fatigue Life Assessment of Thin-walled Welded Joints under Non-proportional Load-time Histories by the Shear Stress Rate Integral Approach[J]. Frattura ed Integrità Strutturale, 2016, 10(38):162-169.
[26]HU Y, HU Z, CAO S. Theoretical Study on Manson-coffin Equation for Physically Short Cracks and Lifetime Prediction[J]. Science China Technological Sciences, 2012, 55(1):34-42.
[27]TAO Z Q, SHANG D G, SUN Y J, et al. Multiaxial Notch Fatigue Life Prediction Based on Pseudo Stress Correction and Finite Element Analysis under Variable Amplitude Loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(8):1674-1690.
[28]WU Z R, HU X T, SONG Y D. Multiaxial Fatigue Life Prediction for Titanium Alloy TC4 under Proportional and Nonproportional Loading[J]. International Journal of Fatigue, 2014, 59:170-175.
[29]FARUQ N Z, SUSMEL L. Proportional/non-proportional Constant/Variable Amplitude Multiaxial Notch Fatigue:Cyclic Plasticity, Non-zero Mean Stresses, and Critical Distance or Plane[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(9):1849-1873.
|