WANG Wei, JI Xiaogang, FANG Chuang, NIU Guofa. Fatigue Life Prediction of Flexible Lattice Structures Prepared by Digital Light Process[J]. China Mechanical Engineering, 2023, 34(21): 2637-2645.
[1]韩剑, 孙士勇, 牛斌, 等. 树脂基复合材料点阵结构的制造技术研究进展[J]. 航空学报, 2023, 44(9):628255.
HAN Jian, SUN Shiyong, NIU Bin, et al. Progress in Manufacturing Technologies of Resin-based Composite Lattice Structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9):628255.
[2]MURR L E, GAYTAN S M, MEDINA F, et al. Next-generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 368(1917):1999-2032.
[3]任利民, 戴宁, 程筱胜, 等. 点阵结构填充模型的边界强化设计方法[J]. 中国机械工程, 2021, 32(5):594-599.
REN Limin, DAI Ning, CHENG Xioasheng, et al. The Method of Boundary Strengthening Design for Lattice Structure Filling Model[J]. China Mechanical Engineering, 2021, 32(5):594-599.
[4]徐赣君, 戴宁. 基于节点增强的功能点阵设计方法[J]. 中国机械工程, 2022, 33(13):1537-1544.
XU Ganjun, DAI Ning. Functional Lattice Structure Design Method Based on Strengthening Nodes[J]. China Mechanical Engineering, 2022, 33(13):1537-1544.
[5]YAVARI S A, WAUTHLé R, Van der STOK J, et al. Fatigue Behavior of Porous Biomaterials Manufactured Using Selective Laser Melting[J]. Materials Science and Engineering:C, 2013, 33(8):4849-4858.
[6]YAVARI S A, AHMADI S M, WAUTHLE R, et al. Relationship between Unit Cell Type and Porosity and the Fatigue Behavior of Selective Laser Melted Meta-biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 43:91-100.
[7]PENG C, TRAN P, NGUYEN-XUAN H, et al. Mechanical Performance and Fatigue Life Prediction of Lattice Structures:Parametric Computational Approach[J]. Composite Structures, 2020, 235:111821.
[8]SANTECCHIA E, HAMOUDA A M S, MUSHARAVATI F, et al. A Review on Fatigue Life Prediction Methods for Metals[J]. Advances in Materials Science and Engineering, 2016, 2016.
[9]ZARGARIAN A, ESFAHANIAN M, KADKHODAPOUR J, et al. Numerical Simulation of the Fatigue Behavior of Additive Manufactured Titanium Porous Lattice Structures[J]. Materials Science and Engineering:C, 2016, 60:339-347.
[10]YANG L, LI Y, CHEN Y, et al. Topologically Optimized Lattice Structures with Superior Fatigue Performance[J]. International Journal of Fatigue, 2022, 165:107188.
[11]BENEDETTI M, DU PLESSIS A, RITCHIE R O, et al. Architected Cellular Materials:a Review on Their Mechanical Properties Towards Fatigue-tolerant Design and Fabrication[J]. Materials Science and Engineering:R:Reports, 2021, 144:100606.
[12]纪小刚, 张建安, 栾宇豪, 等. 仿皮肤三维多孔点阵结构压缩吸能性能研究[J]. 机械工程学报, 2021, 57(15):222-230.
JI Xiaogang, ZHANG Jianan, LUAN Yuhao, et al. Research on Compression Energy Absorption Performance of Skin-like 3D Porous Lattice Structure[J]. Journal of Mechanical Engineering, 2021, 57(15):222-230.
[13]XIAOGANG J, LIN D, WEI W, et al. Study on Tensile Properties of 3D Porous Lattice Structures Based on Cube Truss Cells[J]. Journal of Materials Engineering and Performance, 2022:1-10.
[14]余海洋, 游德淑, 顾晓诚, 等. 基于生物3D打印技术的芍药苷-海藻酸钠-明胶皮肤支架体外生物相容性研究[J]. 介入放射学杂志, 2022, 31(6):582-586.
YU Haiyang, YOU Deshu, GU Xiaocheng, et al. Bio-3D Printing Technique-based Paeoniflorin-sodium alginate-gelatin Skin Scaffold:an Experimental Study of Its Biocompatibility in Vitro[J]. Journal of Interventional Radiology, 2021, 57(15):222-230.
[15]CHANG P, LI S, SUN Q, et al. Large Full-thickness Wounded Skin Regeneration Using 3D-printed Elastic Scaffold with Minimal Functional Unit of Skin[J]. Journal of Tissue Engineering, 2022, 13:20417314211063022.
[16]GONG B, CUI S, ZHAO Y, et al. Strain-controlled Fatigue Behaviors of Porous PLA-based Scaffolds by 3D-printing Technology[J]. Journal of Biomaterials Science, Polymer Edition, 2017, 28(18):2196-2204.
[17]BAPTISTA R, GUEDES M. Fatigue Behavior of Different Geometry Scaffolds for Bone Replacement[J]. Procedia Structural Integrity, 2019, 17:539-546.
[18]SENATOV F S, NIAZA K V, STEPASHKIN A A, et al. Low-cycle Fatigue Behavior of 3d-printed PLA-based Porous Scaffolds[J]. Composites Part B:Engineering, 2016, 97:193-200.
[19]祖海英, 耿春丽, 李大奇, 等. 基于Fe-safe螺杆泵定子橡胶疲劳裂纹形成寿命预测[J]. 机械强度, 2018, 40(1):195-199.
ZU Haiying, GENG Chunli, LI Daqi, et al. Research on Fatigue Performance Test and Life Prediction for Stator Rubber of PCP[J]. Journal of Mechanical Strength, 2018, 40(1):195-199.