[1]LI C, GUO L, GAO H, et al. Similarity-measured Isolation Forest:an Anomaly Detection Method for Machine Monitoring Data[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70:3512512.
[2]BOUKERCHE A, ZHENG L, ALFANDI O. Outlier Detection:Methods, Models, and Classification[J]. ACM Computing Surveys, 2020, 53 (3):1-37.
[3]BAESZCZ T, BIELECKA M, BREUHAUS P. Modeling of Probability Distribution Functions for Automatic Threshold Calculation in Condition Monitoring Systems[J]. Measurement, 2013, 46:727-738.
[4]JABLONSKI A, BARSZCZ T, BIELECKA M, et al. Modeling of Probability Distribution Functions for Automatic Threshold Calculation in Condition Monitoring Systems[J]. Measurement, 2013, 46(1):727-738.
[5]何正嘉, 訾艳阳, 张西宁. 现代信号处理及工程应用[M]. 西安:西安交通大学出版社, 2007:2-8.
HE Zhengjia, ZI Yanyang, ZHANG Xining. Modern Signal Processing and Engineering Application [M].Xian:Xian Jiaotong University Press, 2007:2-8.
[6]李斐君. 面向边缘计算的传感数据异常检测与修正算法[D]. 武汉:华中科技大学, 2019.
LI Feijun. Sensor Data Anomaly Detection and Correction Algorithm for Edge Computing [D]. Wuhan:Huazhong University of Science and Technology, 2019.
[7]GUO J, LIU G, ZUO Y, et al. An Anomaly Detection Framework Based on Autoencoder and Nearest Neighbor[C]∥2018 15th International Conference on Service Systems and Service Management (ICSSSM). Hangzhou, 2018:18080451.
[8]ALGHUSHAIRY O, ALSINI R, SOULE T, et al. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams[J]. Big Data and Cognitive Computing, 2020, 5 (1):1-25.
[9]ZHANG K, HUTTER M, JIN H. A New Local Distance-based Outlier Detection Approach for Scattered Real-world Data[C]∥Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, 2009:813-822.
[10]TELLIS V M, D'SOUZA D J. Detecting Anomalies in Data Stream Using Efficient Techniques:a Review[C]∥2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT). Kannur, 2018:296-298.
[11]DUDAR O, HART P E, STORK D G. Pattern Classification and Scene Analysis[M]. New York:Wiley, 1973.
[12]SREEVIDYA S S. A Survey on Outlier Detection Methods[J]. International Journal of Computer Science and Information Technologies, 2014, 5(6):8153-8156.
[13]STEFANIAK P K, WYOMAN'SKA A, OBUCHOWSKI J, et al. Procedures for Decision Thresholds Finding in Maintenance Management of Belt Conveyor System:Statistical Modeling of Diagnostic Data[C]∥Proceedings of the 12th International Symposium Continuous Surface Mining. Aachen, 2014:391-402.
[14]李国庆, 陆为华, 边竞, 等. 基于自适应扩散核密度估计的时序相关概率最优潮流计算方法[J]. 中国电机工程学报, 2021,41(5):1655-1664.
LI Guoqing, LU Weihua, BIAN Jing, et al. Probabilistic Optimal Power Flow Considering Correlation and Time Series Based on Adaptive Diffusion Kernel Density Estimation [J]. Chinese Journal of Electrical Engineering, 2021,41(5):1655-1664.
[15]CHEN Z, FAN Z, SHENG V, et al. Adaptive Robust Local Online Density Estimation for Streaming Data[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(6):1803-1824.
[16]牛文铁, 才福友, 付景静. 基于自适应带宽核密度估计的载荷外推方法研究[J]. 农业机械学报, 2021, 52 (1):375-384.
NIU Wentie, CAI Fuyou,FU Jingjing. Load Extrapolation Method Based on Adaptive Bandwidth Kernel Density Estimation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (1):375-384.
[17]YUAN K, CHEN X, GUI Z, et al. A Quad-tree-based Fast and Adaptive Kernel Density Estimation Algorithm for Heat-map Generation[J]. International Journal of Geographical Information Science, 2019:2455-2476.
[18]GRAMACKI A. Kernel Density Estimation[M]. Cham:Springer, 2018:25-62.
[19]BARRANCO-CHAMORRO I, CARRILLO-GARCA
R M. Techniques to Deal with Off-diagonal Elements in Confusion Matrices[J]. Mathematics, 2021, 9 (24):3233.
|