Influences of Grain Sizes on Contact Mechanics Properties of Polycrystalline Coppers
LIN Qiyin1,2;ZHANG Yuhan1,2;HONG Jun1,2;WANG Chen1,2;ZHANG Ningjing1,2
1.Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System,Xi'an Jiaotong University,Xi'an,710049
2.Institute of Design Science and Basic Components,Xi'an Jiaotong University,Xi'an,710049
LIN Qiyin, ZHANG Yuhan, HONG Jun, WANG Chen, ZHANG Ningjing, . Influences of Grain Sizes on Contact Mechanics Properties of Polycrystalline Coppers[J]. China Mechanical Engineering, 2021, 32(19): 2312-2320.
[1]TIAN Yang, LIU Zhifeng, DONG Xiangmin. Bearing Deformation of Heavy-duty Machine Tool-foundation Systems and Deformation Detection Methods[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(9):3232-3245.
[2]ZHANG X, XU Y, JACKSON R L. An Analysis of Generated Fractal and Measured Rough Surfaces in Regards to Their Multi-scale Structure and Fractal Dimension[J]. Tribology International, 2017, 105:94-101.
[3]CHEN Hongxu, TAN Zhaoyuan, TAN Feng, et al. Dynamic Performance Analysis and Optimization Method of the Horizontal Machining Center Based on Contact Theory[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9/10):3055-3073.
[4]李玲, 王晶晶, 裴喜永, 等. 机械结合面接触刚度建模新方法[J]. 机械工程学报, 2020, 56(9):162-169.
LI Ling, WANG Jingjing, PEI Xiyong, et al. A New Method for Modeling Mechanical Joint Surface Contact Stiffness[J]. Journal of Mechanical Engineering, 2020, 56(9):162-169.
[5]MERLE B, MAUER-KIENER V, PHARR G M. Influence of Modulus-to-hardness Ratio and Harmonic Parameters on Continuous Stiffness Measurement during Nanoindentation[J]. Acta Materialia, 2017, 134:167-176.
[6]李红, 袁俊丽, 栗卓新, 等. 纳米连接过程的分子动力学模拟研究进展[J]. 中国机械工程, 2019, 30(4):486-493.
LI Hong, YUAN Junli, LI Zuoxin, et al. Research Progress in Molecular Dynamics Simulation of Nano-joining Process[J]. China Mechanical Engineering, 2019, 30(4):486-493.
[7]王全龙, 张超锋, 武美萍, 等. 单晶铜纳米压印亚表层晶体结构演变机理[J]. 中国机械工程, 2019, 30(16):1959-1966.
WANG Quanlong, ZHANG Chaofeng, WU Mei-ping, et al. Crystal Structure Evolution Mechanism of Single Crystal Copper Nanoimprinted Subsurface Layer[J]. China Mechanical Engineering, 2019, 30(16):1959-1966.
[8]温诗铸. 纳米摩擦学研究进展[J]. 机械工程学报, 2007, 43(10):1-8.
WEN Shizhu. Research Progress in Nano-tribology[J]. Journal of Mechanical Engineering, 2007, 43(10):1-8.
[9]黄健萌, 陈晶晶, 李凝. 两种不同形状压头与单晶铜基体间接触力和摩擦力的纳观分析[J]. 摩擦学学报, 2015, 35(3):308-314.
HUANG Jianmeng, CHEN Jingjing, LI Ning. Analysis of the Contact and Friction Force Behaviour between Different Indenter Shape and Substrate on Atomic Scale[J]. Tribology, 2015, 35(3):308-314.
[10]YANG Biao, ZHENG Bailin. The Adhesion Force in Nano-contact during Approaching and Retrieving Processes[M]. Cham:Springer International Publishing, 2018:313-322.
[11]MOJUMDER S, MAHBOOB M, MOTALAB M. Atomistic and Finite Element Study of Nanoindentation in Pure Aluminum[J]. Materials Today Communications, 2020, 23:100798.
[12]樊江, 戴琦晖, 王晋斌, 等. 带涂层干摩擦阻尼器的分子动力学仿真[J]. 航空动力学报, 2018, 33(10):2333-2342.
FAN Jiang, DAI Qihui, WANG Jinbin, et al. Molecular Dynamics Simulations of Dry Friction Dampers with Coating[J]. Journal of Aerospace Power, 2018, 33(10):2333-2342.
[13]SANTHAPURAM R R, NAIR A K. Frictional Properties of Multi-asperity Surfaces at the Nanoscale[J]. Computational Materials Science, 2017, 136:253-263.
[14]黄仕平, 吴杰, 胡俊亮, 等. 基于分子动力学-格林函数法的微凸体接触数值分析[J]. 力学学报, 2017, 49(4):961-967.
HUANG Shiping, WU Jie, HU Junliang, et al. Numerical Analysis of Asperity Contact Model Based on Molecular Dynamics-Green's Function Method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4):961-967.
[15]YASTREBOV V A, ANCIAUX G, MOLINARI J. The Role of the Roughness Spectral Breadth in Elastic Contact of Rough Surfaces[J]. Journal of the Mechanics and Physics of Solids, 2017, 107:469-493.
[16]波波夫. 接触力学与摩擦学的原理及其应用[M]. 北京:清华大学出版社, 2011.
POPOV C. Principles and Applications of Contact Mechanics and Tribology[M]. Beijing:Tsinghua University Press, 2011.
[17]KUMAR S, KURTZ S K. Simulation of Material Microstructure Using a 3D Voronoi Tesselation:Calculation of Effective Thermal Expansion Coefficient of Polycrystalline Materials[J]. Acta Metallurgica et Materialia, 1994, 42(12):3917-3927.
[18]MISHIN Y, MEHL M J, PAPACONSTANTOPOULOS D A, et al. Structural Stability and Lattice Defects in Copper:Ab Initio, Tight-binding, and Embedded-atom Calculations[J]. Physical Review B, 2001, 63(22):224106.
[19]MORSE P M. Diatomic Molecules According to the Wave Mechanics. Ⅱ. Vibrational Levels[J]. Physical Review, 1929, 34(1):57.
[20]LIU Youwen, GUO Jiawen, LUO Hao, et al. Study of Nanoindentation Mechanical Response of Nanocrystalline Structures Using Molecular Dynamics Simulations[J]. Applied Surface Science, 2016, 364:190-200.
[21]ZHANG Zhenyu, YANG Song, GUO Dongming, et al. Deformation Twinning Evolution from a Single Crystal in a Face-centered-cubic Ternary Alloy[J]. Scientific Reports, 2015, 5(1):11290.
[22]ZHANG J, BEGAU C, GENG L, et al. Atomistic Investigation of wear Mechanisms of a Copper bi-crystal[J]. Wear, 2015, 332/333:941-948.
[23]LI Jia, FANG Qihong, LIU Youwen, et al. A Molecular Dynamics Investigation into the Mechanisms of Subsurface Damage and Material Removal of Monocrystalline Copper Subjected to Nanoscale High Speed Grinding[J]. Applied Surface Science, 2014, 303:331-343.
[24]ZHANG Lin, HUANG Hu, ZHAO Hongwei, et al. The Evolution of Machining-induced Surface of Single-crystal FCC Copper via Nanoindentation[J]. Nanoscale Research Letters, 2013, 8(1):211.
[25]HOOVER W G. Nosé-Hoover Nonequilibrium Dynamics and Statistical Mechanics[J]. Molecular Simulation, 2007, 33(1/2):13-19.
[26]VERLET L. Computer “Experiments” on Classical Fluids. Ⅰ. Thermodynamical Properties of Lennard-Jones Molecules[J]. Physical Review, 1967, 159(1):98.
[27]BERENDSEN H J C, POSTMA J P M, GUNSTEREN W F, et al. Molecular Dynamics with Coupling to an External Bath[J]. J. Chem. Phys., 1984, 81:3684-3690.
[28]CHEN Jingjing, HUANG Jianmeng, LIU Yang, et al. The Influence of Velocity Variation on the Adhesive Contact Behavior and the Deformation of Substrate Based on Molecular Dynamics Method[J]. Key Engineering Materials, 2015, 642:141-146.
[29]STILWELL N A, TABOR D. Elastic Recovery of Conical Indentations[J]. Proceedings of the Physical Society, 1961, 78(2):169-179.
[30]LYU G, SU Y, CHU W, et al. Molecular Dynamics Simulation of Plastic Deformation during Nano-indentalion[J]. Jourmal of Universily of Seience and Technology Beijing, 2012, 34(8):898-902.
[31]STUKOWSKI A. Computational Analysis Methods in Atomistic Modeling of Crystals[J]. JOM, 2014, 66(3):399-407.