[1]YANG Z, GAO L. Wavelet Analysis and Fault Feature Extraction of Rolling Bearing[M]. London:Springer, 2014.
[2]HE M, HE D. Deep Learning Based Approach for Bearing Fault Diagnosis[J]. Industry Applications IEEE Transactions on, 2017, 53(3):3057-3065.
[3]王丽华,谢阳阳,周子贤,等.基于卷积神经网络的异步电机故障诊断[J].振动、测试与诊断,2017,37(6):1208-1215.
WANG Lihua, XIE Yangyang, ZHOU Zixian, et al. Motor Fault Diagnosis Based on Convolutional Neural Networks[J]. Vibration,Test and Diagnosis, 2017,37(6):1208-1215.
[4]WANG Z , WANG J , WANG Y . An Intelligent Diagnosis Scheme Based on Generative Adversarial Learning Deep Neural Networks and Its Application to Planetary Gearbox Fault Pattern Recognition[J]. Neurocomputing, 2018, 310(8):213-222.
[5]SHAO S , WANG P , YAN R . Generative Adversarial Networks for Data Augmentation in Machine Fault Diagnosis[J]. Computers in Industry, 2019, 106:85-93.
[6]GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al. Generative Adversarial Networks[J]. Advances in Neural Information Processing Systems, 2014, 3:2672-2680.
[7]CABRERA D , SANCHO F , LONG J , et al. Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery[J]. IEEE Access, 2019, 7:70643-70653.
[8]DING Y , MA L , MA J , et al. A Generative Adversarial Network-based Intelligent Fault Diagnosis Method for Rotating Machinery under Small Sample Size Conditions[J]. IEEE Access, 2019, 7:149736-149749.
[9]ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Generative Adversarial Networks[J]. International Conference on Machine Learning. PMLR, 2017:214-223.
[10]GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved Training of Wasserstein Gans[EB/OL]. (2017-12-25) [2020-05-14]. https:∥arxiv.org/abs/1704.00028.
[11]BAHDANAU D, CHOROWSKI J, SERDYUK D, et al. End-to-end Attention-based Large Vocabulary Speech Recognition[C]∥2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, 2016:4945-4949.
[12]WU Y, MA Y, LIU J, et al. Self-attention Convolutional Neural Network for Improved MR Image Reconstruction[J]. Information Sciences, 2019, 490:317-328.
[13]LI Z , LI Y , LU H . Improve Image Captioning by Self-attention[C]∥ International Conference on Neural Information Processing. Cham, 2019:91-98.
[14]HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8).
[15]XU B , WANG N , CHEN T , et al. Empirical Evaluation of Rectified Activations in Convolutional Network[J]. Computerence, 2015, 1505:00853.
[16]KINGMA D P, BA J. Adam:a Method for Stochastic Optimization[J]. Computer Science, 2014, 1412.6980.
[17]吴春志, 江鹏程, 冯辅周,等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击, 2018, 37(22):56-61.
WU Chunzhi, JIANG Pengcheng, FENG Fuzhou, et al. Faults Diagnosis Method for Gearboxes Based on a 1D Convolutional Neural Network[J]. Vibration and Shock, 2018, 37(22):56-61.
[18]曲建岭, 余路, 袁涛,等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7):134-143.
QU Jianling, YU Lu, YUAN Tao, et al. Adaptive Fault Diagnosis Algorithm for Rolling Bearings Based on One-dimensional Convolutional Neural Network[J]. Journal of Instrumentation, 2018, 39(7):134-143.
|