China Mechanical Engineering ›› 2024, Vol. 35 ›› Issue (03): 498-514.DOI: 10.3969/j.issn.1004-132X.2024.03.012
Previous Articles Next Articles
NI Jing1;CUI Zhi1;HE Lihua1;FU Xin2;ZHU Zefei1
Online:
2024-03-25
Published:
2024-04-23
倪敬1;崔智1;何利华1;付新2;朱泽飞1
通讯作者:
利华(通信作者),男,1987年生,副教授、博士。研究方向为超洁净流控元件高性能制造。E-mail:helihua0617@hdu.edu.cn。
作者简介:
倪敬,男,1979年生,教授、博士研究生导师。研究方向为高端集成电路、航空、核电领域高性能制造工艺、软件和装备设计与制造。E-mail:nj2000@hdu.edu.cn。
基金资助:
CLC Number:
NI Jing, CUI Zhi, HE Lihua, FU Xin, ZHU Zefei. State-of-the-Art of Cutting Technology and Applications of PTFE[J]. China Mechanical Engineering, 2024, 35(03): 498-514.
倪敬, 崔智, 何利华, 付新, 朱泽飞. 聚四氟乙烯材料切削工艺和应用研究进展[J]. 中国机械工程, 2024, 35(03): 498-514.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2024.03.012
[1]PLUNKETT R J. Tetrafluoroethylene Polymers:US2230654[P]. 1941-02-04. [2]DHANUMALAYAN E, JOSHI G M. Performance Properties and Applications of Polytetrafluoroethylene (PTFE)—a Review[J]. Advanced Composites and Hybrid Materials, 2018, 1(2):247-268. [3]古年年, 吴德谦, 黄雪梅. 聚四氟乙烯复合材料的物理机械性能[J]. 润滑与密封, 1997, 22(6):50-51. GU Niannian, WU Deqian, HUANG Xuemei. Physical and Mechanical Properties of PTFE Composites[J]. Lubrication Engineering, 1997, 22(6):50-51. [4]徐博, 朱光明, 祝萌. 航空航天用膨化聚四氟乙烯密封材料研究进展[J]. 中国塑料, 2013, 27(8):8-12. XU Bo, ZHU Guangming, ZHU Meng. Research Progress in Expanded Polytetrafluoroethylence Aerospace Sealant[J]. China Plastics, 2013, 27(8):8-12. [5]SHEN Mingxue, LI Bo, ZHANG Zhinan, et al. Abrasive Wear Behavior of PTFE for Seal Applications under Abrasive-atmosphere Sliding Condition[J]. Friction, 2020, 8(4):755-767. [6]HARRIS K L, PITENIS A A, SAWYER W G, et al. PTFE Tribology and the Role of Mechanochemistry in the Development of Protective Surface Films[J]. Macromolecules, 2015, 48(11):3739-3745. [7]吴祥伟, 王龙飞, 申慧敏. 超洁净电磁阀动态特性仿真与优化[J]. 液压与气动, 2022, 46(5):46-52. WU Xiangwei, WANG Longfei, SHEN Huimin. Simulation and Optimization of Dynamic Characteristics of Ultra-clean Solenoid Valve[J]. Chinese Hydraulics & Pneumatics, 2022, 46(5):46-52. [8]刘景霞, 孟章富, 崔坤伟, 等. 聚四氟乙烯制品及其应用[J]. 有机氟工业, 2020(3):17-20. LIU Jingxia, MENG Zhangfu, CUI Kunwei, et al. Polytetrafluoroethylene Products and Its Application[J]. Organo-Fluorine Industry, 2020(3):17-20. [9]陈碧波. 聚四氟乙烯蠕变性能研究[D]. 西安:西北工业大学, 2007. CHEN Bibo. Study on the Creep Properties of PTFE[D]. Xian:Northwestern Polytechnical University, 2007. [10]王佰春, 杨震, 陈越, 等. PTFE悬浮树脂的加工和应用[J]. 有机氟工业, 2022(1):43-47. WANG Baichun, YANG Zhen, CHEN Yue, et al. Processing and Application of PTFE Suspension Resin[J]. Organo-Fluorine Industry, 2022(1):43-47. [11]PUTS G J, CROUSE P, AMEDURI B M. Polytetrafluoroethylene:Synthesis and Characterization of the Original Extreme Polymer[J]. Chemical Reviews, 2019, 119(3):1763-1805. [12]WOOD L. Fluoropolymers Products, Technologies and Applications Market Report 2016—Research and Markets[R]. Dublin:Research and Markets, 2016. [13]冯之敬. 机械制造工程原理[M]. 3版. 北京:清华大学出版社, 2015. FENG Zhijing. Principles of Mechanical Manufacturing Engineering[M]. 3rd ed. Beijing:Tsinghua University Press, 2015. [14]樊兴民. 工程塑料及其应用[M]. 北京:机械工业出版社, 2016. FAN Xingmin. Application of Engineering Plastics[M]. Beijing:China Machine Press, 2016. [15]RAE P J, DATTELBAUM D M. The Properties of Poly(tetrafluoroethylene) (PTFE) in Compression[J]. Polymer, 2004, 45(22):7615-7625. [16]RAE P J, BROWN E N. The Properties of Poly(tetrafluoroethylene) (PTFE) in Tension[J]. Polymer, 2005, 46(19):8128-8140. [17]ZHENG Xiaotao, WEN Xiang, WANG Wei, et al. Creep-ratcheting Behavior of PTFE Gaskets under Various Temperatures[J]. Polymer Testing, 2017, 60:229-235. [18]ZHENG Xiaotao, WEN Xiang, GAO Jiuyang, et al. Temperature-dependent Ratcheting of PTFE Gaskets under Cyclic Compressive Loads with Small Stress Amplitude[J]. Polymer Testing, 2017, 57:296-301. [19]ZHANG Zhe, CHEN Xu. Multiaxial Ratcheting Behavior of PTFE at Room Temperature[J]. Polymer Testing, 2009, 28(3):288-295. [20]何曼君, 张红东, 陈维孝, 等. 高分子物理[M]. 3版. 上海:复旦大学出版社, 2007. HE Manjun, ZHANG Hongdong, CHEN Weixiao, et al. Polymer Physics[M]. 3rd ed. Shanghai:Fudan University Press, 2007. [21]The Chemours Chemical Co., Ltd. Teflon-ptfe-properties-handbook[EB/OL].[2022-07-31]https:∥www.teflon.com/es/-/media/files/teflon/teflon-ptfe-properties-handbook.pdf. [22]XIAO K Q, ZHANG L C. The Role of Viscous Deformation in the Machining of Polymers[J]. International Journal of Mechanical Sciences, 2002, 44(11):2317-2336. [23]ARAKI Y. Stress Relaxation of Polytetrafluoroethylene in the Vicinity of Its Glass Transition Temperature at about 130℃[J]. Journal of Applied Polymer Science, 1965, 9(4):1515-1524. [24]SMITH E F. Single-point Diamond Turning of Amorphous Thermoplastic Polymers[D]. Raleigh:North Carolina State University, 1989. [25]CRABTREE P, DHOKIA V G, NEWMAN S T, et al. Manufacturing Methodology for Personalised Symptom-specific Sports Insoles[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(6):972-979. [26]STARKWEATHER H W. The Effect of Absorbed Chemicals on the Internal Motions in Poly(Tetrafluoroethylene)[J]. Macromolecules, 1984, 17(6):1178-1180. [27]WORTMANN F J. Analysing the Relaxation Behaviour of Poly(Tetrafluoroethylene) in the α-transition Region by Applying a Two-component Model[J]. Polymer, 1996, 37(12):2471-2476. [28]CALLEJA G, JOURDAN A, AMEDURI B, et al. Where Is the Glass Transition Temperature of Poly(Tetrafluoroethylene)? a New Approach by Dynamic Rheometry and Mechanical Tests[J]. European Polymer Journal, 2013, 49(8):2214-2222. [29]TOBOLSKY A V, KATZ D, TAKAHASHI M. Rheology of Polytetrafluoroethylene[J]. Journal of Polymer Science Part A:General Papers, 1963, 1(1):483-489. [30]ARAKI Y. Thermal Expansion Coefficient of Polytetrafluoroethylene in the Vicinity of Its Glass Transition at about 400°K[J]. Journal of Applied Polymer Science, 1965, 9(2):421-427. [31]SAUER B B, AVAKIAN P, STARKWEATHER H W. Cooperative Relaxations in Semicrystalline Fluoropolymers Studied by Thermally Stimulated Currents and Ac Dielectric[J]. Journal of Polymer Science Part B:Polymer Physics, 1996, 34(3):517-526. [32]ERVINE P, ODONNELL G E, WALSH B. Fundamental Investigations into Burr Formation and Damage Mechanisms in the Micro-milling of a Biomedical Grade Polymer[J]. Machining Science and Technology, 2015, 19(1):112-133. [33]KOBAYASHI A, SAITO K. On the Cutting Mechanism of High Polymers[J]. Journal of Polymer Science, 1962, 58(166):1377-1396. [34]SAITO K. Fracture Phenomena of High Polymers in Cutting[J]. Journal of Macromolecular Science, Part B, 1981, 19(3):459-485. [35]李杨. PEEK薄壁圆环切削加工工艺研究[D]. 哈尔滨:哈尔滨工业大学, 2021. LI Yang. Research on Machining Process of Poly-ether-ether-Ketone(PEEK) Thin Wall Ring[D]. Harbin:Harbin Institute of Technology, 2021. [36]朱兆龙. 石塑复合材料(SPC)切削性能研究[D]. 南京:南京林业大学, 2020. ZHU Zhaolong. Research on the Cutting Performance of Stone Plastic Composite(SPC)[D]. Nanjing:Nanjing Forestry University, 2020. [37]YANG Bin, WANG Hongjian, FU Kunkun, et al. Prediction of Cutting Force and Chip Formation from the True Stress-strain Relation Using an Explicit FEM for Polymer Machining[J]. Polymers, 2022, 14(1):189. [38]FU Guoyu, SUN Fengzhen, HUO Dehong, et al. FE-simulation of Machining Processes of Epoxy with Mulliken Boyce Model[J]. Journal of Manufacturing Processes, 2021, 71:134-146. [39]PATEL Y, BLACKMAN B R K, WILLIAMS J G. Determining Fracture Toughness from Cutting Tests on Polymers[J]. Engineering Fracture Mechanics, 2009, 76(18):2711-2730. [40]WANG H, CHANG L, YE L, et al. On the Toughness Measurement for Ductile Polymers by Orthogonal Cutting[J]. Engineering Fracture Mechanics, 2015, 149:276-286. [41]WANG H, CHANG L, MAI Y W, et al. An Experimental Study of Orthogonal Cutting Mechanisms for Epoxies with Two Different Crosslink Densities[J]. International Journal of Machine Tools and Manufacture, 2018, 124:117-125. [42]WYETH D J. An Investigation into the Mechanics of Cutting Using Data from Orthogonally Cutting Nylon 66[J]. International Journal of Machine Tools and Manufacture, 2008, 48(7/8):896-904. [43]CUI Zhi, NI Jing, HE Lihua, et al. Investigation of Chip Formation, Cutting Force and Surface Roughness during Orthogonal Cutting of Polytetrafluoroethylene[J]. Journal of Manufacturing Processes, 2022, 77:485-494. [44]倪敬, 孙静波, 何利华, 等. PTFE材料正交切削切屑成形特性研究[J]. 中国机械工程, 2022, 33(22):2733-2740. NI Jing, SUN Jingbo, HE Lihua, et al. Study on Chip Forming Characteristics of Orthogonal Cutting of PTFE Materials[J]. China Mechanical Engineering, 2022, 33(22):2733-2740. [45]蒋丽飞, 肖雅文. 关于提高聚四氟乙烯材料切削加工质量的研究[J]. 电子世界, 2013(24):241. JIANG Lifei, XIAO Yawen. Research on Improving Machined Quality of Polyterafluoroethlene[J]. Electronics World, 2013(24):241. [46]王方凯. 聚四氟乙烯薄壁喷口的加工[J]. 现代制造技术与装备, 2016(3):133-134. WANG Fangkai. PTFE Thin Wall Orifice Processing[J]. Modern Manufacturing Technology and Equipment, 2016(3):133-134. [47]朱春江. 影响聚四氟乙烯材料加工表面粗糙度因素的研究[J]. 航空精密制造技术, 2016, 52(2):56-59. ZHU Chunjiang. Factors Influencing PTFE Material Processing Surface Roughness[J]. Aviation Precision Manufacturing Technology, 2016, 52(2):56-59. [48]颖惠民, 付婧媛, 刘范, 等. 超洁净PTFE车削加工切削参数对表面形貌及粗糙度变化影响[J]. 液压与气动, 2022, 46(5):26-35. YING Huimin, FU Jingyuan, LIU Fan, et al. The Influence of Cutting Parameters on Surface Morphology and Roughness during the Ultra-clean PTFE Turning Process[J]. Chinese Hydraulics & Pneumatics, 2022, 46(5):26-35. [49]鲍秀森. 聚四氟乙烯切削加工[J]. 机械制造, 1999, 37(5):26. BAO Xiusen. Ptfe Cutting Processing[J]. Machinery, 1999, 37(5):26. [50]王红庆, 郭英杰, 李春明. 薄壁聚四氟乙烯制品的车削工艺[J]. 机械工人·冷加工, 2003(12):5-6. WANG Hongqing, GUO Yingjie, LI Chunming. Turning Technology of Thin-walled PTFE Products[J]. Metal Working(Metal Cutting), 2003(12):5-6. [51]王庆辉, 权晓宁, 余震. 防止聚四氟乙烯加工变形的方法[J]. 金属加工(冷加工), 2014(9):35-36. WANG Qinghui, QUAN Xiaoning, YU Zhen. Methods to Prevent Deformation of PTFE during Processing[J]. Metal Working Metal Cutting, 2014(9):35-36. [52]朱华锋. 聚四氟乙烯的切削难点及改善措施[J]. 航空精密制造技术, 1995, 31(3):41-42. ZHU Huafeng. Cutting Difficulties and Improvement Measures of PTFE[J]. Aviation Precision Manufacturing Technology, 1995, 31(3):41-42. [53]王春震, 李辉, 蔡祥宝. 聚四氟乙烯薄壁密封件的切削加工[J]. 航天制造技术, 2012(4):44-46. WANG Chunzhen, LI Hui, CAI Xiangbao. Cutting Thin Wall Sealing Workpiece of Polytetrafluoroethylene[J]. Aerospace Manufacturing Technology, 2012(4):44-46. [54]CUI Zhi, NI Jing, HE Lihua, et al. Assessment of Cutting Performance and Surface Quality on Turning Pure Polytetrafluoroethylene[J]. Journal of Materials Research and Technology, 2022, 20:2990-2998. [55]NI Jing, YUAN Ye, CUI Zhi, et al. Investigation of Machinability in Turning of PTFE Based on MRR and Cutting Energy[J]. Journal of Manufacturing Processes, 2023, 85:122-131. [56]NI Jing, HAN Lidong, WU Shaofeng, et al. Modeling of Thrust and Torque for Drilling PTFE Materials[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1):215-226. [57]NATARAJAN E, KAVIARASAN V, LIM W H, et al. Non-dominated Sorting Modified Teaching–Learning-based Optimization for Multi-objective Machining of Polytetrafluoroethylene (PTFE)[J]. Journal of Intelligent Manufacturing, 2020, 31(4):911-935. [58]SATHIYA NARAYANAN N, BASKAR N, GANESAN M, et al. Evaluation and Optimization of Surface Roughness and Metal Removal Rate through RSM, GRA, and TOPSIS Techniques in Turning PTFE Polymers[C]∥Advances in Manufacturing Technology. Singapore:Springer, 2019:595-605. [59]VLAD D, FETECAU C, DOICIN C. Experimental Study on the Cutting Forces in PTFE Orthogonal Cutting[J]. Materiale Plastice, 2013, 50(4):326-333. [60]AZZI A, BOULANOUAR L, LAOUISI A, et al. Modelingand Optimization of Machining Parameters to Minimize Surface Roughness Andmaximize Productivitywhen Turning Polytetrafluoroethylene (PTFE)[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(1):407-430. [61]OKUDA K, NUNOBIKI M. Study on Surface Integrity of PTFE Finished by Ultra-precision Cutting and Surface Performance[J]. Key Engineering Materials, 2005, 291/292:475-482. [62]范忠仁. 非金属切削刀具[M]. 北京:机械工业出版社, 1990. FAN Zhongren. Non-metallic Cutting Tool[M]. Beijing:China Machine Press, 1990. [63]王平, 张大砚. 聚四氟乙烯零件车削加工方法探索[J]. 机械研究与应用, 2016, 29(1):182-183. WANG Ping, ZHANG Dayan. Exploration on Turning Method of the PTFE Parts[J]. Mechanical Research & Application, 2016, 29(1):182-183. [64]GAN Yongquan, WANG Yongqing, LIU Kuo, et al. A Novel and Effective Method for Cryogenic Milling of Polytetrafluoroethylene[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(3):969-976. [65]王一超. 提高聚四氟乙烯工件表面质量与加工精度研究[D]. 兰州:兰州理工大学, 2021. WANG Yichao. Research on Improving Surface Quality and Machining Recision of PTFE Workpiece[D]. Lanzhou:Lanzhou University of Technology, 2021. [66]白宝州, 王克强, 杨庆辉. 聚四氟乙烯材料零件车削加工方法探索[J]. 精密制造与自动化, 2014(4):59-60. BAI Baozhou, WANG Keqiang, YANG Qinghui. Exploration on Turning Processing Method of PTFE Parts[J]. Precise Manufacturing & Automation, 2014(4):59-60. [67]曾晓蓉, 贾海军. 聚四氟乙烯介质套的切削加工[J]. 航空精密制造技术, 2014, 50(1):61-62. ZENG Xiaorong, JIA Haijun. Cutting Process for Dielectric Sleeve of PTEF[J]. Aviation Precision Manufacturing Technology, 2014, 50(1):61-62. [68]冯培晔. PTFE耐磨条加工专用数控车床的研制[D]. 上海:东华大学, 2014. FENG Peiye. The Develop and Manufacture on Special Purpo Se CNC Lathe for Machining PTFE Wearing Strip[D]. Shanghai:Donghua University, 2014. [69]于家祥, 方军, 汪亦凡, 等. 聚四氟乙烯衬套加工变形的研究分析[J]. 四川有色金属, 2021(2):48-50. YU Jiaxiang, FANG Jun, WANG Yifan, et al. Research and Analysis of Processing Deformation of Polytetrafluoroethylene Bushing[J]. Sichuan Nonferrous Metals, 2021(2):48-50. [70]高磊, 王建中. 聚四氟乙烯材料端面余弦曲线槽的车削[J]. 金属加工(冷加工), 2020(10):57-59. GAO Lei, WANG Jianzhong. Turning of Teflon End Surface Cosine Curve Groove[J]. Metal Working (Metal Cutting), 2020(10):57-59. [71]张宁健, 陈雷. 聚四氟乙烯材料薄壁盒体的加工[J]. 金属加工(冷加工), 2021(2):41-42. ZHANG Ningjian, CHEN Lei. Machining of Teflon Thin-walled Box[J]. Metal Working (Metal Cutting), 2021(2):41-42. [72]万长鑫, 詹胜鹏, 陈辉, 等. 功能性填料改性聚合物材料的摩擦学研究进展[J]. 材料工程, 2022, 50(2):73-83. WAN Changxin, ZHAN Shengpeng, CHEN Hui, et al. Tribology Research Progress of Functional Fillers Modified Polymer Materials[J]. Journal of Materials Engineering, 2022, 50(2):73-83. [73]HSISSOU R, SEGHIRI R, BENZEKRI Z, et al. Polymer Composite Materials:a Comprehensive Review[J]. Composite Structures, 2021, 262:113640. [74]高磊. 基于玻纤填充PTFE的摩擦性能及寿命研究[D]. 上海:上海工程技术大学, 2021. GAO Lei. Study on the Tribological Properties and Life Prediction of PTFE Composites Filled with Glass Fiber[D]. Shanghai:Shanghai University of Engineering Science, 2021. [75]李月霞. 青铜粉与碳化硼填充改性聚四氟乙烯性能研究[D]. 湘潭:湘潭大学, 2021. LI Yuexia. Research on Polytetrafluoroethylene Composites Modified with Bronze and Boron Carbide[D]. Xiangtan:Xiangtan University, 2021. [76]李波. 颗粒增强高分子基复合材料车削加工性能研究[D]. 大连:大连理工大学, 2022. LI Bo. Study on Turning Performance of Particle Reinforced Polymer Matrix Composites[D].Dalian:Dalian University of Technology, 2022. [77]FETECAU C, STAN F. Study of Cutting Force and Surface Roughness in the Turning of Polytetrafluoroethylene Composites with a Polycrystalline Diamond Tool[J]. Measurement, 2012, 45(6):1367-1379. [78]STAN F, VLAD D, FETECAU C. Statistical Cutting Force Model for Orthogonal Cutting of Polytetrafluoroethylene(PTFE) Composites[C]∥Proceedings of ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference. Madison, 2013:V001T01A022. [79]ANSARI M S, SHARMA D, NIKAM S. Study of Cutting Forces and Surface Roughness in Turning of Bronze Filled Polytetrafluoroethylene[J]. Advances in Applied Computational Mechanics, 2013, 4(2):111-120. [80]LI P Z, ZHANG W M. Wear Mechanism and Life Prediction of TiN Coated Tool in High Speed Milling of Ceramic-PTFE Composite[J]. Materials Research Innovations, 2014, 18:S1-84. [81]LI P Z, ZHANG W M. Tool Life Based Cutting Parameter Selection in High Speed Milling of Ceramic–PTFE Composites[J]. Materials Research Innovations, 2014, 18(sup1):S1-76-S1-80. [82]顾平. 铝基PTFE覆铜板机加工工艺[J]. 电子机械工程, 1999, 15(2):60-64. GU Ping. The Machining Technology for PTFE Copper Foil Clad Board with Aluminum-alloy Base[J]. Electro-Mechanical Engineering, 1999, 15(2):60-64. [83]王昌赢, 邱坤贤, 魏莹莹, 等. PTFE/CFRP/铝合金叠层材料钻削试验研究[J]. 航空制造技术, 2015, 58(10):90-93. WANG Changying, QIU Kunxian, WEI Yingying, et al. Experimental Investigation on Drilling of PTFE/CFRP/Aluminum Stack[J]. Aeronautical Manufacturing Technology, 2015, 58(10):90-93. [84]张同硕. 核环吊减震装置设计研究[D]. 大连:大连理工大学, 2021. ZHANG Tongshuo. Design and Research on Damping Device of Nuclear Polar Crane[D]. Dalian:Dalian University of Technology, 2021. [85]张勇. 基于5G通信的PTFE基高频覆铜板研究[D]. 南京:南京大学, 2020. ZHANG Yong. Study on PTFE Based High Frequency Copper Clad Laminate Applied in 5G Communication[D]. Nanjing:Nanjing University, 2020. [86]苟雪萍. PTFE高频电路板孔金属化研究及应用[D]. 成都:电子科技大学, 2019. GOU Xueping. Research and Application of Hole Metallization of PTFE High Frequency Circuit Board[D]. Chengdu:University of Electronic Science and Technology of China, 2019. [87]王立峰, 刘潜发, 袁欢欣. 77 GHz车载毫米波用PTFE基材的加工性研究[J]. 印制电路信息, 2021, 29(12):23-29. WANG Lifeng, LIU Qianfa, YUAN Huanxin. The Processing Research of PTFE Materials for 77 GHz Millimeter Wave[J]. Printed Circuit Information, 2021, 29(12):23-29. [88]IWAKI Co., Ltd.Pneumatic Drive Bellows Pumps FW/-H series FW| The Best Chemical Handling Pumps-IWAKI[EB/OL].[2022-10-08].https:∥www.iwakipumps.jp/en/products /pneumatic/fw. [89]GEMU Co., Ltd.db_C50_51_57HPW_gb.pdf[EB/OL].[2022-10-08].https:∥www.gemu-group.com/en_GB/shop/document/db_C50_51_57HPW_zh.pdf/60146b14a8af5b7e3027272e17781405_2021.09.01.pdf. [90]VALQUA, Ltd. 华尔氟龙切削波纹管[EB/OL].[2022-10-08].http:∥www.seal.valqua.co.jp/cn/vf_bellows/bellows/. VALQUA, Ltd. Valflon Cutting Bellows[EB/OL].[2022-10-08].http:∥www.seal.valqua.co.jp/cn/vf_bellows/bellows/. [91]VALQUA, Ltd. (7FZ1)喷射球(7FZ1-R)旋转式喷射球[EB/OL].[2022-10-08].http:∥www.seal.valqua.co.jp/cn/washing_nozzle/7fz1/. VALQUA, Ltd. (7FZ1) Jet Ball(7FZ1-R) Rotary Jet Ball[EB/OL].[2022-10-08].http:∥www.seal.valqua.co.jp/cn/washing_nozzle/7fz1/. [92]MICHAEL S, MARTIN S. Designing with PTFE.[EB/OL].[2022-10-08].https:∥www.elringklinger-ep.cn/fileadmin/user_upload/ekkt/downloads/konstruktions-handbuch/Designing_with_PTFE.pdf. [93]孟章富, 张国佩. 半导体领域聚四氟乙烯的应用与开发[J]. 化工管理, 2020(11):205-206. MENG Zhangfu, ZHANG Guopei. Application and Development of PTFE in Semiconductor Field[J]. Chemical Enterprise Management, 2020(11):205-206. [94]杨津宇, 杨军, 白晓蓉, 等. 面向半导体湿法制程的超洁净流控技术综述[J]. 液压与气动, 2022, 46(5):1-17. YANG Jinyu, YANG Jun, BAI Xiaorong, et al. Review of Ultra-clean Flow Control Technology in Wet Process of Semiconductor[J]. Chinese Hydraulics & Pneumatics, 2022, 46(5):1-17. [95]Semiconductor Equipment and Materials International. Pro-visional Specification for Polymer Components Used in Ultrapure Water and Liquid Chemical Distribution Systems:SEMI F57-0301[S].California:Semiconductor Equipment and Materials International,2001. [96]白清顺, 郭永博, 陈家轩, 等. 超洁净制造的研究与发展[J]. 机械工程学报, 2016, 52(19):145-153. BAI Qingshun, GUO Yongbo, CHEN Jiaxuan, et al. Research and Development of Ultra-clean Manufacturing[J]. Journal of Mechanical Engineering, 2016, 52(19):145-153. |
[1] | ZHANG Jinyang, XU Weichun, WANG Xiaohan, JIANG Xiaohui, GAO Shan. Study on Influences of Milling Process Optimization on Residual Stress Distribution for Machining Nickel-based Superalloys [J]. China Mechanical Engineering, 2024, 35(04): 624-635. |
[2] | TWANG Wei, MA Qianlun, BAI Zhenhua, WANG Ziang. Mechanics Property Prediction of Cold Rolled High Strength Steel Coils Based on GBD#br# [J]. China Mechanical Engineering, 2023, 34(18): 2222-2229. |
[3] | LIU Ying, CHEN Yue, ZHAO Xueli, YU Tongmin, ZHU Tieli, . Study on Properties of Ultrasonic-assisted Injection Molding of Carbon Fiber-reinforced Polypropylene Parts [J]. China Mechanical Engineering, 2023, 34(16): 1975-1981. |
[4] | LI Guangjun, DUAN Hong, XU Lei, KAN Chen, LIU Zhongliang, GAO Xiaodong. Research on Friction and Wear Behaviors of Al7.8Co20.6Cr12.2Fe11.5Ni40.7Ti7.2 High-entropy Superalloy [J]. China Mechanical Engineering, 2023, 34(13): 1568-1575. |
[5] | ZHOU Houming, CHEN Haoyue, LI Shengui. Preparation and Mechanics Properties of Al2O3/ZrO2 Ceramic Tool Materials Based on Gradient Structure [J]. China Mechanical Engineering, 2023, 34(10): 1199-1207. |
[6] | GAO Kai, LI Kun, GU Hongli, . Effects of Amount of Galvanization on Microstructure and Mechanics Properties of Joints Made by Induction-pressure Welding of Low Alloy Steel/5052 Aluminum Alloy [J]. China Mechanical Engineering, 2023, 34(10): 1220-1229. |
[7] | YANG Shuo, ZHANG Jie, KONG Ning, WANG Haowei, WANG Xiaoyu, ZHUANG Yuan. Deformation Law Model and Simulation Verification of Pod Structures with Large Exhibition-to-receive Ratio for Aerospace Applications [J]. China Mechanical Engineering, 2023, 34(07): 780-788. |
[8] | ZHANG Yan, HUANG Chuanzhen, LIU Hanlian. Sintering and Mechanics Properties of C3N4 Based Ceramic Tool Materials [J]. China Mechanical Engineering, 2023, 34(03): 352-358,368. |
[9] | FANG Xuewei, JIANG Xiao, WANG Zhe, WU Xiaokang, HUANG Ke. Forming Process Optimization of Wire and Arc Additive Manufactured High-strength Steel ER120S-G [J]. China Mechanical Engineering, 2023, 34(02): 218-225. |
[10] | JIANG Chuangyu, ZHANG Baoqiang, CHEN Yun, WANG Cunfu, LUO Huageng, HU Jiexiang, CAO Longchao. Study on Mechanics Properties and Numerical Convergence of Gyroid Cellular Structures [J]. China Mechanical Engineering, 2022, 33(23): 2790-28000. |
[11] | JIAO Chen, CHAO Long, ZHU Lei, SHEN Lida, LIANG Huixin, DAI Ning, WANG Changjiang, SUN Jun. Design and Manufacture Method of Bionic Porous Structures for Orthopedic Implants [J]. China Mechanical Engineering, 2022, 33(23): 2844-2850. |
[12] | TANG Yongfeng, LU Ping, LIU Bin, JIANG Kaiyong, YAN Binggong, LIU Jiawei, HAN Wei, . Design and Mechanics Property Analysis for Different Graded Irregular Porous Structures [J]. China Mechanical Engineering, 2022, 33(23): 2859-2866. |
[13] | NI Jing, SUN Jingbo, HE Lihua, CUI Zhi, XUE Fei. Study on Chip Forming Characteristics of Orthogonal Cutting of PTFE Materials [J]. China Mechanical Engineering, 2022, 33(22): 2733-2740. |
[14] | JIA Zhen, LI Shujuan, MA Gaoling, SHAO Wei, QIAO Chang, ZHANG Chen. Research on Cutting Mechanism of A-WEDM of Single-crystal Silicons [J]. China Mechanical Engineering, 2022, 33(20): 2459-2467,2475. |
[15] | ZHANG Shuai, CHEN Zhaoqiang, XIAO Guangchun, YI Mingdong, ZHANG Jingjie, ZHOU Tingting, XU Chonghai. Study on Crack Repair Performance of Si3N4/TiC/ZrSi2 Ceramic Tool Materials [J]. China Mechanical Engineering, 2022, 33(19): 2288-2297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||