中国机械工程 ›› 2024, Vol. 35 ›› Issue (11): 2007-2014,2034.DOI: 10.3969/j.issn.1004-132X.2024.11.012

• 智能制造 • 上一篇    下一篇

面向柔性作业车间生产调度的深度强化学习方法

祝正宇1;郭具涛2;吕佑龙3;左丽玲1;张洁3   

  1. 1.东华大学机械工程学院,上海,201620
    2.上海航天精密机械研究所,上海,201600
    3.东华大学人工智能研究院,上海,200620

  • 出版日期:2024-11-25 发布日期:2024-12-17
  • 作者简介:祝正宇,男,1999年生,硕士研究生。研究方向为智能生产调度。E-mail:yelai5320@163.com。
  • 基金资助:
    国家自然科学基金(52375486);上海市“科技创新行动计划”高新技术领域项目(22511101903)

Deep Reinforcement Learning Method for Flexible Job Shop Scheduling

ZHU Zhengyu1;GUO Jutao2;LYU Youlong3;ZUO Liling1;ZHANG Jie3   

  1. 1.School of Mechanical Engineering,Donghua University,Shanghai,201620
    2.Shanghai Spaceflight Precision Machinery Institute,Shanghai,201600
    3.Institute of Artificial Intelligence,Donghua University,Shanghai,201620

  • Online:2024-11-25 Published:2024-12-17

摘要: 针对多品种、小批量生产模式下柔性作业车间生产调度问题,以最小化订单总拖期时间为优化目标,提出一种基于组合规则和强化学习的智能调度方法。将柔性作业车间生产调度问题转换为马尔可夫决策过程,根据问题特点与优化目标,利用7种特征表征车间状态,设计6种组合式规则作为动作库,通过改进后的深度Q网络(DQN)算法对该问题进行求解。以航天结构件加工车间为案例,分别在5种不同规模大小的算例中,与其他常见的规则式方法进行对比,验证了所提方法缩短任务交付期的可行性和有效性。

关键词: 生产调度, 柔性作业车间, 深度强化学习, 深度Q网络

Abstract: Aiming at the flexible job shop scheduling problems under the mode of multi variety and small batch production, an intelligent scheduling method was proposed to minimize the total tardiness of orders based on combination rules and reinforcement learning. Transforming the flexible job shop production scheduling problem into a Markov decision process, according to the characteristics and optimization objectives of the problems, seven features were used to represent the workshop states, and six combination rules were designed as an action library. The problem was solved by using the improved DQN algorithm. Taking the aerospace structural parts machining workshop as a case study, the feasibility and effectiveness of the proposed method in shortening task delivery time are verified by comparing with other common rule-based methods in five different scale calculation examples.

Key words: production scheduling, flexible job-shop, reinforcement learning, deep Q-network(DQN)

中图分类号: