中国机械工程 ›› 2021, Vol. 32 ›› Issue (10): 1135-1150.DOI: 10.3969/j.issn.1004-132X.2021.10.001
汤勇1;孙亚隆1;郭志军2;张仕伟1;袁伟1;唐恒3;梁富业1
出版日期:
2021-05-25
发布日期:
2021-06-08
作者简介:
汤勇,男,1962年生,教授、博士研究生导师。研究方向为微制造、表面功能结构制造。E-mail:ytang@scut.edu.cn。
基金资助:
TANG Yong1;SUN Yalong1;GUO Zhijun2;ZHANG Shiwei1;YUAN Wei1;TANG Heng3;LIANG Fuye1
Online:
2021-05-25
Published:
2021-06-08
摘要: 高效率的散热系统是抑制电机温升、提高电机运行稳定性和延长电机寿命的重要基础。详细介绍了风冷、液冷和蒸发冷却三种电机常用散热系统的发展现状;分析讨论了各类电机散热系统的优缺点和适用范围,重点综述了目前国内外在提高电机散热系统冷却效率方面的研究进展。结合额外热路增强型电机散热方案和相变散热技术提出了以相变传热器件来提高电机散热效率的新方案,最后对电机散热系统的发展趋势进行了科学预测与展望。
中图分类号:
汤勇, 孙亚隆, 郭志军, 张仕伟, 袁伟, 唐恒, 梁富业. 电机散热系统的研究现状与发展趋势[J]. 中国机械工程, 2021, 32(10): 1135-1150.
TANG Yong, SUN Yalong, GUO Zhijun, ZHANG Shiwei, YUAN Wei, TANG Heng, LIANG Fuye. Development Status and Perspective Trend of Motor Cooling Systems[J]. China Mechanical Engineering, 2021, 32(10): 1135-1150.
[1]ARASH H I, SADEGH V Z. Line Start Permanent Magnet Synchronous Motors:Challenges and Opportunities[J]. Energy, 2009, 34(11):1755-1763. [2]LU S M. A Review of High-efficiency Motors:Specification, Policy, and Technology[J]. Renewable and Sustainable Energy Reviews, 2016, 59:1-12. [3]刘蕾,刘光复,刘马林,等.车用永磁同步电机三维温度场分析[J].中国机械工程,2015,26(11):1438-1444. LIU Lei, LIU Guangfu, LIU Malin, et al. Analysis on Three-dimensional Temperature Field of Permanent Magnet Synchronous Motor in Vehcles[J]. China Mechanical Engineering, 2015, 26(11):1438-1444. [4]江从喜,赵兰萍,杜旭之,等.基于整车工况的电动汽车轮毂电机散热分析[J]. 中国机械工程,2016,27(13):1839-1845. JIANG Congxi, ZHAO Lanping, DU Xuzhi, et al. Thermal Analysis on In-wheel Motor under Whole Electric Vehicle Driving Conditions[J]. China Mechanical Engineering, 2016, 27(13):1839-1845. [5]孙亚隆.永磁同步电机热管式散热系统设计与性能分析[D].广州:华南理工大学,2019. SUN Yalong. Design and Performance Analysis of Heat Pipe Based Cooling System for Permanent Magnet Synchronous Motors[D]. Guangzhou:South China University of Technology, 2019. [6]温万昱.基于热管的新能源汽车电机散热系统设计与性能分析[D].广州:华南理工大学,2017. WEN Wanyu. Design and Performance Analysis of Heat Dissipation System Based on Heat Pipe Applying to Motor of New Energy Vehicle[D]. Guangzhou:South China University of Technology, 2017. [7]FAWZAL A S, CIRSTEA R M, WOOLMER T J, et al. Air Inlet/Outlet Arrangement for Motor Cooling Application of Axial Flux PM Machines[J]. Applied Thermal Engineering, 2017, 130:1520-1529. [8]LI K, YAN J, WANG Q. Water Cooling Based Strategy for Lithium Ion Battery Pack Dynamic Cycling for Thermal Management System[J]. Applied Thermal Engineering, 2018, 132:575-585. [9]尹惠.永磁同步电机损耗计算及温度场分析[D].哈尔滨:哈尔滨工业大学,2015. YIN Hui. PMSM Loss Calculation and Temperature Field Analysis[D]. Harbin:Harbin Institute of Technology, 2015. [10]张琦,李增亮,董祥伟,等.大功率潜水电机冷却系统分析方法与试验研究[J].中国机械工程,2021,32(3):368-377. ZHANG Qi, LI Zengliang, DONG Xiangwei, et al. Analysis Method and Experimental Research on Cooling System of High Power Submersible Motor[J]. China Mechanical Engineering, 2021,32(3):368-377. [11]CRESCIMBINI F, NAPOLI A D, SOLERO L, et al. Compact Permanent-magnet Generator for Hybrid Vehicle Applications[J]. IEEE Transactions on Industry Applications, 2005, 41(5):1168-1177. [12]RAHMAN K M, PATEL N R, WARD T G, et al. Application of Direct-drive Wheel Motor for Fuel Cell Electric and Hybrid Electric Vehicle Propulsion System[J]. IEEE Transactions on Industry Applications, 2006, 42:1185-1192. [13]SUN Y, ZHANG S, YUAN W, et al. Applicability Study of the Potting Material Based Thermal Management Strategy for Permanent Magnet Synchronous Motors[J]. Applied Thermal Engineering, 2019, 149:1370-1378. [14]YAO Y, GU L, FAN T, et al. Evaluation of Heat Transfer Characteristic of Aluminum Nitride (AlN) Potting Compound for the End Windings of Permanent Magnet Synchronous Machines[C]∥2011 International Conference on Electrical and Control Engineering. Yichang, 2011:4498-4501. [15]PYRHNEN J, LINDH P, POLIKARPOVA M, et al. Heat-transfer Improvements in an Axial-flux Permanent Magnet Synchronous Machine[J]. Applied Thermal Engineering, 2015, 76:245-251. [16]GALEA M, GERADA C, RAMINOSOA T, et al. A Thermal Improvement Technique for Phase Windings of Electrical Machines[J]. IEEE Transactions on Industry Applications, 2012, 48(1):79-87. [17]POLIKARPOVA M, LINDH P, GERADA C, et al. Thermal Effects of Stator Potting in an Axial-flux Permanent Magnet Synchronous Generator[J]. Applied Thermal Engineering, 2015, 75:421-429. [18]王升平,吴柏禧,温万昱,等.基于热管-风冷系统的新能源汽车电机热分析[J].电机与控制应用,2018(8):91-97. WANG Shengping, WU Boxi, WEN Wanyu, et al. Thermal Analysis and New Energy Vehicle Motor Based on Heat Pipe-air Cooling System[J]. Electric Machines & Control Application, 2018(8):91-97. [19]乐智.纯电动汽车电机驱动系的冷却系统设计与研究[D].天津:河北工业大学,2010. YUE Zhi. Design and Research on the Cooling System of Pure Electric Vehicle Motor Drive System[D]. Tianjin:Hebei University of Technology, 2010. [20]王桂香,徐龙祥,董继勇.高速磁悬浮电机的发热与冷却研究[J].中国机械工程,2010,21(8):912-916. WANG Guixiang, XU Longxiang, DONG Jiyong. Research on Temperature Calculation and Cooling System of a High-speed Magnetic Levitation Motor[J]. China Mechanical Engineering, 2010, 21(8):912-916. [21]殷巧玉,李伟力,张晓晨.高速永磁发电机冷却流道结构双维度连续量子蚁群优化的温度场计算[J].中国电机工程学报,2011,31(36):77-85. YIN Qiaoyu, LI Weili, ZHANG Xiaochen. Analysis on Temperature Fields in HSPMG with Grooves Two Dimensional Optimal Designed by Continuous Quantum Ant Colony Optimization[J]. Proceedings of the Chinese Society for Electrical Engineering, 2011, 31(36):77-85. [22]王金松,靳雁艳.一种发电机水套冷却换热系统:中国, 200920041550.2[P]. 2009-03-24. WANG Jinsong, JIN Yanyan. A Generator Jacket Cooling System:China, 200920041550.2[P]. 2009-03-24. [23]李翠萍,管正伟,丁秀翠,等.电动汽车用电机冷却系统设计及发展综述[J].微特电机, 2019, 47(1):82-86. LI Cuiping, GUAN Zhengwei, DING Xiucui, et al. Design and Development of Motor Cooling System for Electric Vehicles[J]. Small & Special Electrical Machines, 2019, 47(1):82-86. [24]NODA S, MIZUNO S, KOYAMA T, et al. Development of a Totally Enclosed Fan-cooled Traction Motor[J]. IEEE Transactions on Industry Applications, 2013, 49(4):1508-1514. [25]JANG J H, CHIU H C, YAN W M, et al. Numerical Study on Electromagnetics and Thermal Cooling of a Switched Reluctance Motor[J]. Case Studies in Thermal Engineering, 2015, 6:16-27. [26]MELKA B, SMOLKA J, HETMANCAYK J, et al. Numerical and Experimental Analysis of Heat Dissipation Intensification from Electric Motor[J]. Energy, 2019, 182:269-279. [27]MELKA B, SMOLKA J, HETMANCZYK J, et al. Experimentally Validated Numerical Model of Thermal and Flow Processes Within the Permanent Magnet Brushless Direct Current Motor[J]. International Journal of Thermal Sciences, 2018, 130:406-415. [28]CHIU H C, JANG J H, YAN W M, et al. Thermal Performance Analysis of a 30 kW Switched Reluctance Motor[J]. International Journal of Heat and Mass Transfer, 2017, 114:145-154. [29]GALLONI E, PARISI P, MARIGNETTI F, et al. CFD Analysis of a Radial Fan for Electric Motor Cooling[J]. Thermal Science and Engineering Progress, 2018, 8:470-476. [30]NAKAHAMA T, SUZUKI K, HASHIDUME S, et al. Cooling Airflow in Unidirectional Ventilated Open-type Motor for Electric Vehicles[J]. IEEE Transactions on Energy Conversion, 2006, 21(3):645-651. [31]KIM C, LEE K S. Thermal Nexus Model for the Thermal Characteristic Analysis of an Open-type Air-cooled Induction Motor[J]. Applied Thermal Engineering, 2017, 112:1108-1116. [32]GRABOWSKI M, URBANIEC K, WERNIK J, et al. Numerical Simulation and Experimental Verification of Heat Transfer from a Finned Housing of an Electric Motor[J]. Energy Conversion and Management, 2016, 125:91-96. [33]YOON M K, JEON C S, KAUH S K. Efficiency Increase of an Induction Motor by Improving Cooling Performance[J]. IEEE Transactions on Energy Conversion, 2002, 17(1):1-6. [34]WEN J B, ZHENG J. Numerical Analysis of the External Wind Path for Medium-size High-voltage Asynchronous Motors[J]. Applied Thermal Engineering, 2015, 90:869-878. [35]CHANG C C, KUO Y F, WANG J C, et al. Air Cooling for a Large-scale Motor[J]. Applied Thermal Engineering, 2010, 30(11/12):1360-1368. [36]XU Y, JIA Y, AI M, et al. Heat Transfer Characteristics of External Ventilated Path in Compact High-voltage Motor[J]. International Journal of Heat & Mass Transfer, 2018, 124:1136-1146. [37]XU X, GE B, TAO D, et al. Effect of Helium on Temperature Rise of Helium Blower Drive Motor in High-temperature Gas-cooled Reactor[J]. Applied Thermal Engineering, 2019, 159:113888. [38]陈薇薇.电动汽车用永磁同步电机设计及温度场分析[D].南京:南京航空航天大学,2013. CHEN Weiwei. Design and Temperature Analysis of Permanent Magnet Synchronous Motor for Electric Vehicles[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013. [39]YE Z N, LUO W D, ZHANG W M, et al. Simulative Analysis of Traction Motor Cooling System Based on CFD [C]∥2011 International Conference on Electric Information and Control Engineering. Wuhan, 2011:746-749. [40]KRAL C, HAUMER A, BAUML T. Thermal Model and Behavior of a Totally-enclosed-water-cooled Squirrel-cage Induction Machine for Traction Applications[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10):3555-3565. [41]孙晓东,朱熀秋,杨泽斌.无轴承永磁同步电机技术综述及其发展趋势探讨[J].中国机械工程,2012,23(17):2128-2135. SUN Xiaodong, ZHU Huangqiu, YANG Zebin. An Overview and Development Trend of Bearingless Permanent Magnet Synchronous Motors[J]. China Mechanical Engineering, 2012, 23(17):2128-2135. [42]李翠萍.微型电动汽车用车用感应电机的冷却系统研究[D].哈尔滨:哈尔滨工业大学,2013. LI Cuiping. Study on the Cooling System for Mini Vehicle Induction Motor[D]. Harbin:Harbin Institute of Technology, 2013. [43]吴柏禧.基于多场耦合的增程器用外转子发电机转子结构设计[D]. 广州:华南理工大学, 2018. WU Boxi. Rotor Structure Design of External Rotor Generator for Range-extender Based on Multi-field Coupling[D]. Guangzhou:South China University of Technology, 2018. [44]万珍平,温万昱,吴柏禧,等.考虑换热能力和压降的永磁同步电机冷却流道设计[J]. 华南理工大学学报, 2017, 45(7):25-32. WAN Zhenping, WEN Wanyu, WU Boxi, et al. Cooling Channel Design of Permanent Magnetic Synchronous Motor Considering Heat Exchange and Pressure Loss[J]. Journal of South China University of Technology, 2017, 45(7):25-32. [45]杨学威,张小发.电机壳体Z字型冷却水道设计[J]. 电机与控制应用, 2016(9):62-65. YANG Xuewei, ZHANG Xiaofa. Z-shaped Cooling Channels of Motor Shell Designs[J]. Electric Machines & Control Application, 2016(9):62-65. [46]BORGES S S, CEZARIO C A, KUNZ T T. Design of Water Cooled Electric Motors Using CFD and Thermography Techniques [C]∥ International Conference on Electrical Machines. Vilamoura, Portugal, 2008:1-6. [47]ZHENG P, LIU R, THELIN P, et al. Research on the Cooling System of a 4QT Prototype Machine Used for HEV[J]. IEEE Transactions on Energy Conversion, 2008, 23(1):61-67. [48]郝嘉欣,唐志国,李荟卿,等.永磁同步电机水道肋片结构参数优化[J]. 微特电机, 2017, 45(1):38-40. HAO Jiaxin, TANG Zhiguo, LI Huiqing, et al. Optimal Design of Straight Fins Structural Parameters in PMSM[J]. Small & Special Electrical Machines, 2017, 45(1):38-40. [49]郝嘉欣,唐志国,李荟卿,等.电机液冷流道扰流片优化设计[J].合肥工业大学学报, 2016, 39(4):440-444. HAO Jiaxin, TANG Zhiguo, LI Huiqing, et al. Optimal Design of the Spoiler in Cooling Channel of Liquid-cooled Motor[J]. Journal of Hefei University of Technology, 2016, 39(4):440-444. [50]范作智,赵永华,肖红.一种电动机的逆向双水道冷却结构:中国, 201020195457.X[P]. 2010-05-19. FAN Zuozhi, ZHAO Yonghua, XIAO Hong. A Reverse Dual Cooling Channel Structure for Generator:China, 201020195457.X[P]. 2010-05-19. [51]LASKARIS K I, KLADAS A G. Liquid Cooled Permanent-magnet Traction Motor Design Considering Temporary Overloading[C]∥International Conference on Electrical Machines. Marseille, 2012:2677-2682. [52]LEE K H, CHA H R, KIM Y B. Development of an Interior Permanent Magnet Motor through Rotor Cooling for Electric Vehicles[J]. Applied Thermal Engineering, 2016, 95:348-356. [53]PONOMAREV P, POLIKARPOVA M, PYRHNEN J. Conjugated Fluid-solid Heat Transfer Modeling of a Directly-oil-cooled PMSM Using CFD[C]∥Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012 International Symposium on IEEE. Sorrento, 2012:141-145. [54]HUANG Z, NATEGH S, LASSILA V, et al. Direct Oil Cooling of Traction Motors in Hybrid Drives[C]∥2012 IEEE International Electric Vehicle Conference. Greenville, SC, 2012:1-8. [55]PARK M H, KIM S C. Thermal Characteristics and Effects of Oil Spray Cooling on In-wheel Motors in Electric Vehicles[J]. Applied Thermal Engineering, 2019, 152:582-593. [56]LIM D H, KIM S C. Thermal Performance of Oil Spray Cooling System for In-wheel Motor in Electric Vehicles[J]. Applied Thermal Engineering, 2014, 63(2):577-587. [57]DAVIN T, HARMAND S, JULIEN P, et al. Experimental Study of Oil Cooling Systems for Electric Motors[J]. Applied Thermal Engineering, 2015, 75(1):1-13. [58]张学礼. 水下电机定子蒸发冷却技术与传统冷却技术模型实验研究[D]. 北京:中国科学院研究生院(电工研究所), 2006. ZHANG Xueli. Experimental Study on a Stator Model of Underwater Motor by Evaporation-cooling Technology and Traditional Cooling Technologies[D]. Beijing:Institute of Electrical Engineering of the Chinese Academy of Science, 2006. [59]蔡静. 蒸发冷却电机空心导线内气液两相流动摩擦阻力的研究[D]. 北京:中国科学院研究生院(电工研究所), 2005. CAI Jing. Study on the Frication Resistant in the Hollow Stator Bar of Evaporative Cooling Generator[D]. Beijing:Institute of Electrical Engineering of the Chinese Academy of Science, 2005. [60]刘长红,姚若萍.自循环蒸发冷却电机定子铁心与绕组间的热量传递[J].中国电机工程学报,2008, 28 (11):107-112. LIU Changhong, YAO Ruoping. Heat Transfer Between Stator Core and Winding in Hydro-generators with Self Pump Circulated Evaporation Cooling System[J]. Proceedings of the Chinese Society for Electrical Engineering, 2008, 28(11):107-112. [61]国建鸿,傅德平,袁建华,等.300MW汽轮发电机强迫循环蒸发冷却系统定子绕组温升计算[J].中国电机工程学报,2008, 28(26):92-97. GUO Jianhong, FU Deping, YUAN Jianhua, et al. Calculation of Temperature Distribution of Larger Evaporative Cooling Turbo-generator with Forced Inner Cooling System[J]. Proceedings of the Chinese Society for Electrical Engineering, 2008, 28(26):92-97. [62]温志伟,傅德平,顾国彪.浸润式混合强迫内冷的蒸发冷却汽轮发电机电子三维温度场的仿真分析[J]. 电工电能新技术, 2006, 25(3):13-17. WEN Zhiwei, FU Deping, GU Guobiao. Simulation of 3D Temperature Distribution of Immersion Evaporative Cooling Turbo-generator Combined with Forced Inner Cooling System[J]. Advanced Technology of Electrical Engineering and Energy, 2006, 25(3):13-17. [63]侯哲.大型汽轮发电机转子开放管道式蒸发冷却技术基础研究[D]. 北京:中国科学院研究生院(电工研究所), 2008. HOU Zhe. Fundamental Research of Open Channel Evaporative Cooling Technique for Rotor of Large Turbine Generator[D]. Beijing:Institute of Electrical Engineering of the Chinese Academy of Science, 2008. [64]HUANG D S, CHEN T C, LIANG T, et al. Design of Fins with a Grooved Heat Pipe for Dissipation of Heat from High-powered Automotive LED Headlights[J]. Energy Conversion and Management, 2019, 180:550-558. [65]CHEN Y, LI B, WANG X, et al. Investigation of Heat Transfer and Thermal Stresses of Novel Thermal Management System Integrated with Vapor Chamber for IGBT Power Module[J]. Thermal Science and Engineering Progress, 2019, 10:73-81. [66]XIAHOU G, ZHANG J, MA R, et al. Novel Heat Pipe Radiator for Vertical CPU Cooling and Its Experimental Study[J]. International Journal of Heat and Mass Transfer, 2019, 130:912-922. [67]LI J, LYU L C, ZHOU G H, et al. Mechanism of a Microscale Flat Plate Heat Pipe with Extremely High Nominal Thermal Conductivity for Cooling High-end Smartphone Chips[J]. Energy Conversion and Management, 2019, 201:112202. [68]IBRAHIM N, FAHAD A, RAHMAN S, et al. Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications:a Critical Review[J]. Renewable and Sustainable Energy Reviews, 2017, 74:26-50. [69]汤勇,唐恒,万珍平,等.超薄为热管的研究现状及发展趋势[J]. 机械工程学报, 2017, 53(20):131-144. TANG Yong, TANG Heng, WAN Zhenping, et al. Development Status and Perspective Trend of Ultra-thin Micro Heat Pipe[J]. Journal of Mechanical Engineering, 2017, 53(20):131-144. [70]BELLETTRE J, SARTRE V, BIAIS F, et al. Transient State Study of Electric Motor Heating and Phase Change Solid-Liquid Cooling[J]. Applied Thermal Engineering, 1997, 17(1):17-31. [71]WANG S, LI Y, LI Y Z, et al. Conception and Experimental Investigation of a Hybrid Temperature Control Method Using Phase Change Material for Permanent Magnet Synchronous Motors[J]. Experimental Thermal and Fluid Science, 2016, 81:9-20. [72]WANG J X, LI Y Z, WANG S N, et al. Experimental Investigation of the Thermal Control Effects of Phase Change Material Based Packaging Strategy for On-board Permanent Magnet Synchronous Motors[J]. Energy Conversion and Management, 2016, 123:232-242. [73]WANG S, LI Y, LI Y Z, et al. Transient Cooling Effect Analyses for a Permanent-magnet Synchronous Motor with Phase-change-material Packaging[J]. Applied Thermal Engineering, 2016, 109:251-260. [74]PUTRA N, ARIANTARA B. Electric Motor Thermal Management System Using L-shaped Flat Heat Pipes[J]. Applied Thermal Engineering, 2017, 126:1156-1163. [75]HASSETT T, HODOWANEC M. Electric Motor with Heat Pipes:US, US8134260B2[P]. 2012-03-13. [76]FEDOSEYEV L, PEARCE E M. Rotor Assembly with Heat Pipe Cooling System:US, US2014/0368064A1[P]. 2014-12-18. [77]SUN Y L, ZHANG S W, CHEN G, et al. Experimental and Numerical Investigation on a Novel Heat Pipe Based Cooling Strategy for Permanent Magnet Synchronous Motors[J]. Applied Thermal Engineering, 2020, 170:114970. [78]FANG G, YUAN W, YAN Z, et al. Thermal Management Integrated with Three-dimensional Heat Pipes for Air-cooled Permanent Magnet Synchronous Motor[J]. Applied Thermal Engineering, 2019, 152:594-604. |
[1] | 钟永彬, 高健, 冯富原, 张揽宇, . 基于闭环辨识模型的永磁同步直线电机分数阶反馈控制方法[J]. 中国机械工程, 2023, 34(23): 2773-2780,2793. |
[2] | 陈立娟, 吴蝶, 高伟, 魏龙正, 曹晟维, 艾超, 李景彬. 基于反馈线性化与非线性扰动补偿的液压型风电机组有功功率控制研究[J]. 中国机械工程, 2023, 34(23): 2889-2897. |
[3] | 蒙康, 滕伟, 彭迪康, 向玲, 柳亦兵. 运行机理与数据双驱动的风电齿轮箱系统故障预警[J]. 中国机械工程, 2023, 34(12): 1476-1485. |
[4] | 付翔, 刘泽轩, 刘道远, 李东园, . 轮毂电机驱动越野车原地转向控制[J]. 中国机械工程, 2023, 34(10): 1251-1259. |
[5] | 付翔, 王玉新, 刘道远, 王纪杰, . 基于越野工况辨识的轮毂电机车辆驱动力控制[J]. 中国机械工程, 2023, 34(08): 955-965. |
[6] | 郑杰基, 陈凌宇, 范大鹏, 谢馨. 双电机精密传动机构消隙方法研究[J]. 中国机械工程, 2022, 33(22): 2684-2692. |
[7] | 曹腾, 李晓牛, 王柏权, 温智益, 吴大伟. 单相压电电机驱动的高精度孔径光阑设计[J]. 中国机械工程, 2022, 33(20): 2414-2419. |
[8] | 吴磊, 王家序, 张新, 刘治汶. 基于最大重加权峭度盲解卷积的风电故障诊断[J]. 中国机械工程, 2022, 33(19): 2356-2363. |
[9] | 纪历, 马雪晴, 陈震民. 磁悬浮高速电机转子低频振动机理及补偿方法[J]. 中国机械工程, 2022, 33(17): 2053-2060. |
[10] | 秦大同, 吕雪慧, 陈锐博, 杨战斌. 运行工况下风电传动系统机电耦合建模及其动态特性分析[J]. 中国机械工程, 2022, 33(03): 253-260. |
[11] | 刘艳雄, , 王根聚, 华林, 赵新浩, . 采用自适应滑模变结构控制的精冲机双驱动协调控制系统[J]. 中国机械工程, 2021, 32(18): 2189-2196. |
[12] | 王升德, 姚振强, 沈洪. 屏蔽套形变对环形间隙轴向流阻的影响研究[J]. 中国机械工程, 2021, 32(17): 2017-2024. |
[13] | 唐伟, 王立忠, 庄健, 王庭凯. 无刷直流电机的模糊自整定MRPID转速控制方法研究[J]. 中国机械工程, 2021, 32(15): 1786-1792,1800. |
[14] | 康爽, 陈长征, 赵思雨, 罗园庆, 孔祥希. 自适应差异多尺度形态学的风力机叶片红外图像增强研究[J]. 中国机械工程, 2021, 32(07): 786-792. |
[15] | 江志农1;王子嘉1;张进杰2;黄翼飞3;茆志伟2. 基于能量算子梯度邻域特征提取的核电应急柴油发电机组故障诊断方法[J]. 中国机械工程, 2021, 32(05): 617-623. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||