[1]熊柏青,闫宏伟,张永安,等. 我国航空铝合金产业发展战略研究[J]. 中国工程科学, 2023, 25(1):88-95.
XIONG Baiqing, YAN Hongwei, ZHANG Yongan, et al. Research on Development Strategy of Aviation Aluminum Alloy Industry in China[J]. Chinese Engineering Science, 2023, 25(1):88-95.
[2]张宇鹏,王海斗,董丽虹,等. 航空航天铝合金腐蚀疲劳失效与寿命预测研究进展[J]. 中国有色金属学报, 2024,34(6):1-29.
ZHANG Yupeng, WANG Haidou, DONG Lihong, et al. Research Progress on Corrosion Fatigue Failure and Life Prediction of Aerospace Aluminum Alloy[J]. The Chinese Journal of Nonferrous Metals, 2024,34(6):1-29.
[3]杜冲,汪泽匪,孟毅,等. Al-Cu-Mg-Zn超硬铝合金盘类构件塑性变形性能及锻造成形工艺的研究[J].精密成形工程,2022,14(2):101-109.
DU Chong, WANG Zefei, MENG Yi, et al. Study on Plastic Deformation Properties and Forging Forming Process of Al-Cu-Mg-Zn Superhard Aluminum Alloy Disk Members[J]. Precision Forming Engineering, 2019, 14(2):101-109.
[4]李云峰,孙向阳,宋燕利,等. 电磁脉冲处理技术研究现状及其展望[J]. 材料科学与工艺, 2022, 30(4):11-24.
LI Yunfeng, SUN Xiangyang, SONG Yanli, et al. Research Status and Prospect of Electromagnetic Pulse Processing Technology[J]. Materials Science and Technology, 2022, 30(4):11-24.
[5]XU Xiaofeng, ZHAO Yuguang, MA Bingdong, et al. Rapid Gain Refinement of 2024 Al Alloy through Recrystallization Induced by Electropulsing[J]. Materials Science and Engineering:A,2014, 612:223-226.
[6]王涛,谷岩.直流电作用下Cu在Sn熔体中的溶解动力学以及界面反应[J].精密成形工程,2022,14(12):199-206.
WANG Tao, GU Yan. Dissolution Kinetics and Interfacial Reaction of Cu in Sn Melt under Direct Current[J]. Precision Forming Engineering, 2019, 14(12):199-206.
[7]KUMAR A, PAUL S K. Restoration of Ductility in Hydrogen Embrittled Dual-phase(DP 780) Steel by the Electric Pulse Treatment[J]. Materials Science and Engineering:A, 2022, 847:143256.
[8]蔡春波,高少伟,高桂丽,等. 脉冲电流对Al-Cu-Mn-Zr合金时效处理组织及性能的影响[J]. 金属热处理, 2023, 48(4):104-110.
CAI Chunbo, GAO Shaowei, GAO Guili, et al. Effect of Pulse Current on Microstructure and Properties of Al-Cu-Mn-Zr Alloy after Aging Treatment[J]. Heat Treatment of Metals, 2023, 48(4):104-110.
[9]XIAO Ang, HUANG Changqing, CUI Xiaohui, et al. Impact of the Pulse Induced Current on the Microstructure and Mechanical Properties of the 7075-T6 Aluminum Alloy[J]. Journal of Alloys and Compounds, 2022, 911:165021.
[10]CHEN Zhe, LI Bing, HUANG Qingyu, et al. The Effect of the Electric Pulse Treatment on the Microstructure and Mechanical Performance of the Al-Zn Alloy[J]. Materials Science and Engineering:A,2020, 796:140016.
[11]GENG Yingxin, ZHANG Zhen, YU Kangcai, et al. Suppressing the Lüders Elongation in Novel Al-Mg-Zn(-Cu) Alloy via Pulsed Electric Current[J]. Materials Science and Engineering:A,2023, 891:145966.
[12]XU Xiaofeng, ZHAO Yuguang, WANG Xudong, et al. Effect of Rapid Solid-solution Induced by Electropulsing on the Microstructure and Mechanical Properties in 7075 Al Alloy[J]. Materials Science and Engineering:A, 2016, 654:278-281.
[13]钢铁研究总院,首钢总公司技术研究院,冶金工业信息标准研究院,等. 金属材料维氏硬度试验第1部分:试验方法 20072379-T-605[S]. 北京:中国标准出版社,2008.
General Iron and Steel Research Institute, Shougang Corporation Technology Research Institute, Metallurgical Industry Information Standard Research Institute, et al. Metallic Materials-Vickers Hardness Test—Part 1:Test Method 20072379-T-605[S]. Beijing:Standards Press of China, 2008.
[14]PEDERSEN K O, WESTERMANN I, FURU T, et al. Influence of Microstructure on Work-hardening and Ductile Fracture of Aluminium Alloys[J]. Materials & Design, 2015, 70:31-44.
[15]方越平. 7075铝合金的形变热处理工艺及组织性能研究[D]. 太原:太原科技大学, 2023.
FANG Yueping. Study on Deformation Heat Treatment Technology and Microstructure Properties of 7075 Aluminum Alloy[D]. Taiyuan:Taiyuan University of Science and Technology, 2023.
[16]MA Hongqiang, WANG Shengxun, WANG Jiajun, et al. Investigation on Strength and Fracture Mechanism of Aluminum Plate-fin Structures at Cryogenic Temperature[J]. Engineering Failure Analysis,2023, 152:107512.
[17]WANG Yichang, CAO Lingfei, WU Xiaodong, et al. Research Progress on Microstructure and Properties of 7xxx Series Aluminum Alloys for Oil Drill Pipes[J]. Materials Reports, 2019, 33(7):1190-1197.
[18]XU Xiaofeng, ZHAO Yuguang, WANG Xudong, et al. The Rapid Age Strengthening Induced by Ag Additions in 7075 Aluminum Alloy[J]. Materials Science and Engineering:A, 2015, 648:367-370.
[19]XIAO Ang, HUANG Changqing, WANG Shipeng, et al. Effects of Induced Electro-pulsing and Aging Process on Properties and Microstructure of 7075 Aluminum Alloy[J]. Materials Characterization, 2022, 192:112222.
[20]MA Z, ROBSON J D. Understanding the Effect of Deformation Combined with Heat Treatment on Age Hardening of Al-Zn-Mg-Cu Alloy AA7075[J]. Materials Science and Engineering:A,2023, 878:145212.
[21]KE Bin, YE Lingying, ZHANG Yong, et al. Enhanced Mechanical Properties and Corrosion Resistance of an Al-Zn-Mg Aluminum Alloy through Variable-rate Non-isothermal Aging[J]. Journal of Alloys and Compounds, 2022, 890:161933.
[22]MOON C, THUILLIER S, LEE J, et al. Mechanical Properties of Solution Heat Treated Al-Zn-Mg-Cu(7075) Alloy under Different Cooling Conditions:Analysis with Full Field Measurement and Finite Element Modeling[J]. Journal of Alloys and Compounds, 2021, 856:158180.
[23]CHEN Kai, ZHAN Lihua, YU Wenfang. Rapidly Modifying Microstructure and Mechanical Properties of AA7150 Al Alloy Processed with Electro Pulsing Treatment[J]. Journal of Materials Science & Technology, 2021, 95:172-179.
[24]DU Zhihao, DENG Zanshi, XIAO Ang, et al. Effect of the Aging Process on the Micro-structure & Properties of 7075 Aluminum Alloy Using Electromagnetic Bulging[J]. Journal of Manufacturing Processes,2021, 70:15-23.
[25]祁清文,卜恒勇,黎芩. 7000系铝合金固溶时效过程中微观组织变化的研究进展[J]. 金属热处理. 2024, 49(2):244-251.
QI Qingwen, BU Hengyong, LI Qin. Research Progress on Microstructure Change of 7000 Series Aluminum Alloy during Solution Aging[J]. Heat Treatment of Metals, 2024, 49(2):244-251
[26]PANKADE S B, KHEDEKAR D S, GOGTE C L. The Influence of Heat Treatments on Electrical Conductivity and Corrosion Performance of AA 7075-T6 Aluminium Alloy[J]. Procedia Manufacturing,2018, 20:53-58.
[27]CHEN Yuwen, TSAI Yuting, TUNG Poyen, et al. Phase Quantification in Low Carbon Nb-Mo Bearing Steel by Electron Backscatter Diffraction Technique Coupled with Kernel Average Misorientation[J]. Materials Characterization, 2018, 139:49-58.
[28]KAMAYA M. Characterization of Microstructural Damage due to Low-cycle Fatigue by EBSD Observation[J]. Materials Characterization, 2009, 60(12):1454-1462.
[29]XIAO Ang, YAN Ziqin, HUANG Changqing, et al. Effect of Initial State on Formability of AA1060 Alloy under Quasi-static and Electromagnetic Forming[J]. Journal of Materials Research and Technology, 2022, 19:2781-2793.
|