[1]徐伟炜. 集中荷载下固定铰支剪式可展桥梁结构分析与参数优化[J]. 东南大学学报(自然科学版), 2022, 52(6):1063-1070.
XU Weiwei. Structural Analysis and Parameter Optimization of Fixed Hinged Scissor Deployable Bridges under Point Load[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(6):1063-1070.
[2]TACHI T. Freeform Rigid-foldable Structure Using Bidirectionally Flat-foldable Planar Quadrilateral Mesh[C]∥Advances in Architectural Geometry 2010. Vienna, 2010:87-102.
[3]唐愉真, 刘超, 肖洪, 等. 可展薄膜的Miura弹性折痕建模与分析[J]. 哈尔滨工业大学学报, 2023, 55(1):1-11.
TANG Yuzhen, LIU Chao, XIAO Hong, et al. Modeling and Analysis of Miura Elastic Creases for Deployable Membrane[J]. Journal of Harbin Institute of Technology, 2023, 55(1):1-11.
[4]MA Xiaofei, LI Tuanjie, MA Jingya, et al. Recent Advances in Space-deployable Structures in China[J]. Engineering, 2022(10):207-219.
[5]杨慧, 冯健, 刘永斌, 等. 百米级多超弹性铰链抛物柱面天线折展机构设计与运动学分析[J]. 机械工程学报, 2022, 58(3):75-83.
YANG Hui, FENG Jian, LIU Yongbin, et al. Design and Kinematic Analysis of a Large Deployable Mechanism of the Parabolic Cylindrical Antenna with Multi Tape-spring Hinges[J]. Journal of Mechanical Engineering, 2022, 58(3):75-83.
[6]畅博彦, 杨帅, 金国光, 等. 基于直线驱动的空间可展机构运动分析[J]. 机械工程学报, 2020, 56(5):192-201.
CHANG Boyan, YANG Shuai, JIN Guoguang, et al. Motion Analysis of Spatial Deployable Mechanism Driven in Straight Line[J]. Journal of Mechanical Engineering, 2020, 56(5):192-201.
[7]畅博彦, 徐鑫, 梁栋, 等. 厚板三浦折展机构的几何设计与运动分析[J]. 中国空间科学技术, 2022, 42(4):146-157.
CHANG Boyan, XU Xin, LIANG Dong, et al. Geometric Design and Motion Analysis of Miura-ORI Mechanism with Thick Panels[J]. Chinese Space Science and Technology, 2022, 42(4):146-157.
[8]杨名远, 马家耀, 李建民, 等. 基于厚板折纸理论的微创手术钳[J]. 机械工程学报, 2018, 54(17):36-45.
YANG Mingyuan, MA Jiayao, LI Jianmin, et al. Thick-panel Origami Inspired Forceps for Minimally Invasive Surgery[J]. Journal of Mechanical Engineering, 2018, 54(17):36-45.
[9]EDMONDSON B J, BOWEN L A, GRAMES C L, et al. Oriceps:Origami-inspired Forceps[C]∥Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers. Snowbird, 2013:V001t01a027.
[10]陈焱. 基于机构运动的大变形超材料[J]. 机械工程学报, 2020, 56(19):2-13.
CHEN Yan. Review on Kinematic Metamaterials[J]. Journal of Mechanical Engineering, 2020, 56(19):2-13.
[11]方虹斌, 吴海平, 刘作林, 等. 折纸结构和折纸超材料动力学研究进展[J]. 力学学报, 2022, 54(1):1-38.
FANG Hongbin, WU Haiping, LIU Zuolin, et al. Advances in the Dynamics of Origami Structures and Origami Metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1):1-38.
[12]曾祥, 周怡君, 袁伟钦, 等. 基于Twin-Bennett机构固面可展开天线的优化设计[J]. 中国机械工程, 2021, 32(11):1361-1369.
ZENG Xiang, ZHOU Yijun, YUAN Weiqin, et al. Optimal Design of Solid Surface Deployable Antennas Based on Twin-Bennett Linkage[J]. China Mechanical Engineering, 2021, 32(11):1361-1369.
[13]任伟峰, 何柏岩, 聂锐. 环形桁架天线展开动力学分析[J]. 中国机械工程, 2019, 30(24):2945-2952.
REN Weifeng, HE Baiyan, NIE Rui. Deployment Forward Dynamics Analysis of Hoop Truss Antennas[J]. China Mechanical Engineering, 2019, 30(24):2945-2952.
[14]WATANABE N, KAWAGUCHI K. The Method for Judging Rigid Foldability[J]. Origami, 2009, 4:165-174.
[15]TACHI T. Generalization of Rigid-foldable Quadrilateral-mesh Origami[J]. Journal of the International Association for Shell and Spatial Structures, 2009, 50(162):173-179.
[16]CAI Jianguo, ZHANG Yuting, XU Yixiang, et al. The Foldability of Cylindrical Foldable Structures Based on Rigid Origami[J]. Journal of Mechanical Design, 2016, 138(3):031401.
[17]CAI Jianguo, LIU Yangqing, MA Ruijun, et al. Nonrigidly Foldability Analysis of Kresling Cylindrical Origami[J]. Journal of Mechanisms and Robotics, 2017, 9(4):041018.
[18]DAI J S, JONES J R. Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2002, 216(10):959-970.
[19]DAI J S, JONES J R. Matrix Representation of Topological Changes in Metamorphic Mechanisms[J]. Journal of Mechanical Design, 2005, 127(4):837-840.
[20]HULL T. Project Origami:Activities for Exploring Mathematics[M]. 2nd ed. Boca Raton:CRC Press, 2013
[21]WANG K, CHEN Y. Folding a Patterned Cylinder by Rigid Origami[J]. Origami, 2011, 5:265-276.
[22]冯慧娟, 马家耀, 陈焱. 广义Waterbomb折纸管的刚性折叠运动特性[J]. 机械工程学报, 2020, 56(19):143-159.
FENG Huijuan, MA Jiayao, CHEN Yan. Rigid Folding of Generalized Waterbomb Origami Tubes[J]. Journal of Mechanical Engineering, 2020, 56(19):143-159.
[23]EDMONDSON B J, LANG R J, MAGLEBY S P, et al. An Offset Panel Technique for Thick Rigidily Foldable Origami[C]∥Proceedings of ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, 2014:DETC2014-35606.
[24]TACHI T. Rigid-foldable Thick Origami[J]. Origami, 2011, 5:253-264.
[25]WANG Cheng, ZHANG Dawei, LI Junlan, et al. Kirigami-inspired Thick-panel Deployable Structures[J]. International Journal of Solids and Structures, 2022, 251:111752.
[26]CHEN Yan, PENG Rui, YOU Zhong. Origami of Thick Panels[J]. Science, 2015, 349(6246):396-400.
[27]LIU J, YU Y, HUANG Z, et al. General Order Principle for Multi-Bennett linkages[J]. Chinese Journal of Mechanical Engineering, 2013, 26(2):275-281.
[28]ZHENG Y, LI S, ZHANG J, et al. An Enhanced Simplified Model for Dynamic Analysis of Deployable Bennett Linkages Considering Link Cross-sectional Size and Contact[J]. International Journal of Solids and Structures, 2024, 286:112583.
[29]QI X, DENG Z, LI B, et al. Design and Optimization of Large Deployable Mechanism Constructed by Myard Linkages[J]. CEAS Space Journal, 2013, 5:147-155.
[30]YAO P, LU S, ZHANG W, et al. Double-ring Deployable Antenna Mechanism Based on Square Frustum-shaped Bricard Units[J]. Journal of Mechanical Engineering, 2023, 59(21):147-156.
[31]张霄, 李明, 崔琦峰, 等. 基于正六边形折纸的单自由度可展结构[J]. 机械工程学报, 2021, 57(11):153-164.
ZHANG Xiao, LI Ming, CUI Qifeng, et al. Regularly Hexagonal Origami Pattern Inspired Deployable Structure with Single Degree of Freedom[J]. Journal of Mechanical Engineering, 2021, 57(11):153-164
[32]WANG Zhonggang. Recent Advances in Novel Metallic Honeycomb Structure[J]. Composites Part B:Engineering, 2019, 166:731-741.
[33]QI Chang, JIANG Feng, YANG Shu. Advanced Honeycomb Designs for Improving Mechanical Properties:A Review[J]. Composites Part B:Engineering, 2021, 227:109393.
[34]BUITRAGO B L, SANTIUSTE C, SNCHEZ-SEZ S, et al. Modelling of Composite Sandwich Structures with Honeycomb Core Subjected to High-velocity Impact[J]. Composite Structures, 2010, 92(9):2090-2096.
[35]PAN Shidong, WU Linzhi, SUN Yuguo, et al. Longitudinal Shear Strength and Failure Process of Honeycomb Cores[J]. Composite Structures, 2006, 72(1):42-46.
[36]LI J, ZHANG Q, FENG J, et al. Characterization of Aluminum Honeycomb Material Failure in Large Deformation Compression, Shear, and Tearing[J]. Chemical Engineering Journal, 2013, 225(4):766-775.
[37]HE Li, CHENG Yuansheng, LIU Jun. Precise Bending Stress Analysis of Corrugated-core, Honeycomb-core and X-core Sandwich Panels[J]. Composite Structures, 2012, 94(5):1656-1668.
[38]GU Yang, XU Xianghong. Novel Gradient Design and Simulation of Voronoi Structures[J]. International Journal of Applied Mechanics, 2018, 10(7):1850079.
[39]LIU Bing, XU Xianghong. Mechanical Behavior and Mechanism Investigation on the Optimized and Novel Bio-inspired Nonpneumatic Composite Tires[J]. Reviews on Advanced Materials Science, 2022, 61(1):250-264.
[40]黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2006.
HUANG Zhen, ZHAO Yongsheng, ZHAO Tieshi. Advanced Spatial Mechanism[M]. Beijing:Higher Education Press, 2006.
[41]LIU S Y, CHEN Y. Myard Linkage and its Mobile Assemblies[J]. Mechanism and Machine Theory, 2009, 44(10):1950-1963.
[42]LEE C C. Kinematic Analysis and Dimensional Synthesis of General-type Sarrus Mechanism[J]. JSME International Journal Ser C, Dynamics, Control, Robotics, Design and Manufacturing, 1996, 39(4):790-799.
|