[1]刘新, 郭睦基, 李登虎, 等. 弹壳拉深成形工艺分析及模具设计[J]. 锻压技术, 2022, 47(12):81-86.
LIU Xin, GUO Muji, LI Denghu, et al. Process Analysis and Die Design on Cartridge Deep Drawing[J]. Forging & Stamping Technology, 2022, 47(12):81-86.
[2]MANABE K I, SOEDA K, SHIBATA A. Effects ofVariable Punch Speed and Blank Holder Force in Warm Superplastic Deep Drawing Process[J]. Metals, 2021; 11(3):493.
[3]ZEIN H L E, ABDRABOU M, ELSHERBINY M, et al. Effect of Die Design Parameters on Thinning of Sheet Metal in the Deep Drawing Process[J]. American Journal of Mechanical Engineering, 2013, 1(2):20-29.
[4]廖仕军, 吕刚, 薛松, 等. 弹壳底部平底成形工艺优化[J]. 兵器装备工程学报, 2020, 41(11):182-185.
LIAO Shijun, LYU Gang, XUE Song, et al. Study on Flattening Shaping Process-optimized for Campaign Bullet[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11):182-185.
[5]王玉松. 7050铝合金弹壳成形工艺优化及热处理工艺的研究[D]. 重庆:重庆大学, 2015.
WANG Yusong. Research on the Heat Treatment Process and Optimization of Forming Process of 7050 Aluminum Alloy Cartridge[D]. Chongqing:Chongqing University, 2015.
[6]邹宇, 王名川, 陈才, 等. 基于有限元方法的弹壳拉深成形工艺结构参数研究[J]. 锻压技术, 2022, 47(11):123-129.
ZOU Yu, WANG Mingchuan, CHEN Cai, et al. Research on Structural Parameters of Deep Drawing Process for Cartridge Case Based on FEM[J]. Forging & Stamping Technology, 2022, 47(11):123-129.
[7]胡开元, 王雷刚. 基于响应面法与灰狼优化算法的壳体拉深成形模具优化设计[J]. 锻压技术, 2022, 47(6):244-250.
HU Kaiyuan, WANG Leigang. Optimization Design on Shell Deep Drawing Die Based on Response Surface Methodology and Grey Wolf Optimization Algorithm[J]. Forging & Stamping Technology, 2022, 47(6):244-250.
[8]LI H, WEN G, JIA X, et al. Augmenting Features by Relative Transformation for Small Data[J]. Knowledge-based System, 2021, 225(7):107121.
[9]张在房, 徐冯, 孙习武. 火箭贮箱箱底充液拉深成形工艺的多目标优化[J]. 机械工程学报, 2022, 58(5):78-86.
ZHANG Zaifang, XU Feng, SUN Xiwu. Multi-objective Optimization of Hydroforming Process of Rocket Tank Bottom[J]. Journal of Mechanical Engineering, 2022,58(5):78-86.
[10]徐冯, 张在房, 孙习武. 贮箱箱底充液拉深成形工艺参数的多目标优化[J]. 计量与测试技术, 2021, 48(6):53-57.
XU Feng, ZHANG Zaifang, SUN Xiwu. Multi-objective Optimization of Hydroforming Technological Parameters for Tank Bottom[J]. Metrology & Measurement Technique, 2021, 48(6):53-57.
[11]任振宝, 曹春平. 基于熵权综合评价法的动力电池壳首道次拉深成形参数优化[J]. 中国机械工程, 2022, 33(13):1622-1628.
REN Zhenbao, CAO Chunping. Optimization of First Deep Drawing Process Parameters for Power Battery Shells Based on Entropy Weight Comprehensive Evaluation Method[J]. China Mechanical Engineering, 2022, 33(13):1622-1628.
[12]YAGHOUBI S, FERESHTEH-SANIEE F. Optimization of the Geometrical Parameters for Elevated Temperature Hydro-mechanical Deep Drawing Process of 2024 Aluminum Alloy[J]. Proceedings of the Institution of Mechanical Engineers Part E:Journal of Process Mechanical Engineering, 2021, 235(2):151-161.
[13]CHEBBAH M S, LEBAAL N. Tube Hydroforming Optimization Using a Surrogate Modeling Approach and Genetic Algorithm[J]. Mechanics of Advanced Materials & Structures, 2018, 27(6):515-524.
[14]RAMANJANEYULU P, VENKATARAMAIAH P, REDDY K D. Multi Parameter Optimization of Deep Drawing for Cylindrical Cup Formation on Brass Sheets Using Grey Relational Analysis[J]. Materials Today:Proceedings, 2019, 18(7):2772-2778.
[15]张俊喜, 陈百明, 郭小汝, 等. Cr12MoV钢凸模失效分析[J]. 模具工业, 2016, 42(10):67-71.
ZHANG Junxi, CHEN Baiming, GUO Xiaoru, et al. Failure Analysis on Punch with Cr12MoV Steel[J]. Die & Mould Industry, 2016, 42(10):67-71.
[16]曹永娟, 冯亮亮, 毛瑞, 等. 轴向磁场永磁记忆电机多目标分层优化设计[J]. 中国电机工程学报, 2021, 41(6):1983-1991.
CAO Yongjuan, FENG Liangliang, MAO Rui, et al. Multi-objective Stratified Optimization Design of Axial-flux Permanent Magnet Memory Motor[J]. Proceedings of the CSEE, 2021, 41(6):1983-1991.
[17]梁旭东, 王炜, 赵凯, 等. 随机森林回归分析在激光熔覆形貌预测中的应用[J]. 中国有色金属学报, 2020, 30(7):1644-1652.
LIANG Xudong, WANG Wei, ZHAO Kai, et al. Application of Random Forest Regression Analysis in Trace Geometry Prediction of Laser Cladding[J]. 2020, 30(7):1644-1652.
[18]MIRHALILI S, SAREMI S, MIRHALILI S M, et al.Multi-objective Grey Wolf Optimizer:a Novel Algorithm for Multi-criterion Optimization[J]. Expert Systems with Application, 2015, 47(4), 106-119.
[19]易茜, 柳淳, 李聪波, 等. 基于小样本数据驱动的滚齿工艺参数低碳优化决策方法[J]. 中国机械工程, 2022, 33(13):1604-1612.
YI Qian, LIU Chun, LI Congbo, et al. A Low Carbon Optimization Decision Method for Gear Hobbing Process Parameters Driven by Small Sample Data[J]. China Mechanical Engineering, 2022, 33(13):1604-1612.
[20]崔博, 王坤, 王佳俊, 等. 基于改进MOGWO的复杂交通隧洞车辆定位布设优化[J]. 水利水电技术, 2022, 53(7):105-115.
CUI Bo, WANG Kun, WANG Jiajun, et al. Improved MOGWO-based Optimization of Vehicle Positioning Deployment in Complicated Traffic Tunnel[J]. Water Resources and Hydropower Engineering, 2022, 53(7):105-115.
[21]薛阳, 燕宇铖, 贾巍, 等. 基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J]. 太阳能学报, 2023, 44(7):207-213.
XUE Yang, YAN Yucheng, JIA Wei, et al. Photovoltaic Power Prediction Model Based on IGWO-LSTM[J]. Acta Energiae Solaris Sinica, 2023, 44(7):207-213.
[22]何祖杰, 吴新烨, 刘中华. 基于改进灰狼算法优化支持向量机的短期交通流预测[J]. 厦门大学学报:自然科学版, 2022, 61(2):288-297.
HE Zujie, WU Xinye, LIU Zhonghua. Optimized SVM Model for Short-term Traffic Flow Prediction Based on Improved Gray Wolf Optimizer[J]. Journal of Xiamen University:Natural Science, 2022,61(2):288-297.
[23]谭美芳, 匡锐, 张清勇, 等. 基于改进灰狼算法优化LSTM的断面交通流预测[J]. 武汉理工大学学报, 2023, 45(5):132-139.
TAN Meifang, KUANG Rui, ZHANG Qingyong, et al. LSTM for Cross-sectional Traffic Flow Prediction Based on Improved Grey Wolf Optimizer Algorithm[J]. Journal of Wuhan University of Technology, 2023, 45(5):132-139.
[24]侯钰哲, 李舜酩, 龚思琪, 等. 滚动轴承故障特征选择的Filter与改进灰狼优化混合算法[J]. 计算机集成制造系统, 2023, 29(5):1452-1461.
HOU Yuzhe, LI Shunming, GONG Siqi, et al. Hybrid Algorithm of Filter and Improved Gray Wolf Optimization for Fault Feature Selection of Rolling Bearing[J]. Computer Integrated Manufacturing Systems, 2023,29(5):1452-1461.
[25]蒋荣超, 刘大维, 王登峰. 基于熵权TOPSIS方法的整车动力学性能多目标优化[J]. 机械工程学报, 2018, 54(2):150-158.
JIANG Rongchao, LIU Dawei, WANG Dengfeng. Multi-objective Optimization of Vehicle Dynamics Performance Based on Entropy Weighted TOPSIS Method[J]. Journal of Mechanical Engineering, 2018, 54(2):150-158.
[26]ZHANG Q, LI H. MOEA/D:a Multi Objective Evolutionary Algorithm Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
[27]RUSSO L M S, FRANCISCO A P. Quick Hypervolume[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4):481-502.
|