中国机械工程 ›› 2024, Vol. 35 ›› Issue (03): 487-497.DOI: 10.3969/j.issn.1004-132X.2024.03.011

• 增材制造 • 上一篇    下一篇

流-热-力耦合的高性能结构拓扑优化设计方法

李荣启1;闫涛1;何智成1;米栋2;姜潮1;郑静1   

  1. 1.湖南大学汽车车身先进设计制造国家重点实验室,长沙,410082
    2.中国航发湖南动力机械研究所,株洲,412002

  • 出版日期:2024-03-25 发布日期:2024-04-23
  • 通讯作者: 何智成(通信作者),男,1983年生,教授、博士研究生导师。研究方向为先进结构与智能设计、智能汽车与智能控制等。E-mail:hezhicheng815@163.com。
  • 作者简介:李荣启,男,1972年生,助理教授。研究方向为轻质材料成形工艺与模具设计、车身CAE。E-mail:287293916@qq.com。
  • 基金资助:
    国家自然科学基金(U20A20285);湖南省杰出青年基金(2021JJ10016);湖南省创新领军人才项目(2022RC3038)

A Topology Optimized Design Method for High-performance Structures with Fluid-thermal-mechanics Coupling

LI Rongqi1;YAN Tao1;HE Zhicheng1;MI Dong2;JIANG Chao1;ZHENG Jing1   

  1. 1.State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,
    Changsha,410082
    2.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou,Hunan,412002

  • Online:2024-03-25 Published:2024-04-23

摘要: 拓扑优化和增材制造技术的快速发展为高性能复杂装备提供了高效的产品设计和制造方法。目前高性能结构拓扑优化只考虑热力耦合或者流热耦合的设计,且大多局限于简单结构,未考虑流热力三场共同作用下的设计,限制了结构性能的提升。针对流热力多物理场工况下的高性能复杂结构设计这一挑战,提出了一种流热力耦合拓扑优化方法,以提高复杂结构的承温能力。首先引入流场、温度场和结构位移场的控制方程,对计算域的流固材料进行统一表征;然后以最小化平均温度为目标,以流动能量耗散和结构柔度为约束,建立了流热力耦合的拓扑优化模型,并结合变分法和拉格朗日函数开展了设计变量的灵敏度分析;最后将所建立的拓扑优化模型应用于涡轮的结构设计,得到了散热性能良好、流道分布合理的可增材制造结构。

关键词: 拓扑优化, 变密度法, 多物理场, 高性能结构

Abstract: The rapid advancement of topology optimization and additive manufacturing technology provided efficient methods for designing and manufacturing high-performance complex equipment. However, current topology optimization techniques for high-performance structures only considered the design of thermal-mechanics coupling or fluid-thermal coupling, and were mostly limited to simple structures. The design under the combined effects of fluid-thermal-mechanics fields was not considered, which restricted the enhancement of structural performance. This paper tackled the challenge of designing high-performance complex structures under multi-physics fields, encompassing fluid-thermal-mechanics interactions. A topology optimization method was proposed to enhance the ability to withstand temperature of intricate structures. Firstly, the governing equations of flow field, temperature field and structural displacement field were introduced to provide a unified description of the fluid-solid materials within the computational domain. Secondly, the topology optimization model was formulated with fluid-thermal-mechanics coupling. The objective function was set to minimize the average temperature, while flow energy dissipation and structural compliance served as constraint functions. Sensitivity analysis of design variables was carried out by using a combination of the variational method and Lagrangian function. Finally, the established topology optimization model was applied to the structural design of a turbine, resulting in a structure suitable for additive manufacturing with excellent heat dissipation performance and well-balanced flow channel distribution.

Key words: topology optimization, variable density method, multiphysics field, high-performance structure

中图分类号: