[1]LEISHMAN G J. Principles of Helicopter Aerodynamics[M]. New York:Cambridge University Press, 2006: 292-295.
[2]YEN J G. Effects of Blade Tip Shape on Dynamics, Cost, Weight, Aerodynamic Performance, and Aeroelastic Response[J]. Journal of the American Helicopter Society, 1994, 39(4): 37-45.
[3]虞志浩, 杨卫东, 张呈林. 基于Broyden法的旋翼多体系统气动弹性分析[J]. 航空学报, 2012, 33(12): 2171-2182.
YU Zhihao, YANG Weidong, ZHANG Chenglin. Aeroelasticity Analysis of Rotor Multibody System Based on Broyden Method[J]. ACTA Aeronauticaet Astronautica Sinica, 2012, 33(12): 2171-2182.
[4]SRINIVAS V, CHOPRA I, MARK W N. Aeroelastic Analysis of Advanced Geometry Tiltrotor Aircraft[J]. Journal of the American Helicopter Society, 1998, 43(3): 212-221.
[5]ZHAO Q J, GUO H X. A Study on Aerodynamic and Acoustic Characteristics of Advanced Tip-shape Rotors[J]. Journal of the American Helicopter Society, 2007, 52(3): 201-213.
[6]ACREE C W. Effects of V-22 Blade Modifications on Whirl Flutter and Loads[J]. Journal of the American Heli-copter Society, 2005, 50(3): 269-278.
[7]HOUBOLT J C, BROOKS G W. Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades[R]. NASA, TR-1346, 1957.
[8]HODGES D H, DOWELL E H. Nonlinear Equations of Motion for the Elastic Bending and Torsion of TwistedNonuniform Rotor Blades[R]. NASA, TN-D-7818, 1974.
[9]CHOPRA I, NGUYEN K. Development of UMARC (University of Maryland Advanced Rotor Code)[C]∥The 46th Annual Forum of the American Helicopter Society. Washington D C, 1990:46-1-004.
[10]JOHNSON W. Rotorcraft Aerodynamics Models for a Comprehensive Analysis[C]∥The 54th annual Forum of the American Helicopter Society. Washington D C, 1998:54-00103.
[11]SABERI H, KHOSHLAHJEH M, ORMISTON R A, et al. Overview of RCAS and Application to Advanced Rotorcraft Problems[C]∥American Helicopter Society 4th Decennial Specialists Conference on Aeromechanics. San Francisco, 2004:sm-aeromech-2004-0043.
[12]EPPS J J, CHANDRA R. The Natural Frequencies of Rotating Composite Beams with Tip Sweep[J]. Journal of the American Helicopter Society, 1996, 40(1): 29-36.
[13]JOHNSON W, DATTA A. Requirements for Next Generation Comprehensive Analysis of Rotorcraft[C]∥American Helicopter Society Specialists. San Francisco, 2008:sm-2008-mech-037-Johnson.
[14]TRUONG V K. Dynamics Studies of the ERATO Blade, Based on Finite Element Analysis[C]∥The 31st European Rotorcraft Forum. Florence, 2005:94.
[15]YEO H, TRUONG K V, CHANDRA R. Comparison of One-dimensional and Three-dimensional Structural Dynamics Modeling of Advanced Geometry Blades[J]. Journal of Aircraft, 2014, 51(1): 226-235.
[16]KEE Y J, SHIN S J. Structural Dynamic Modeling for Rotating Blades Using Three Dimensional Finite Elements[J]. Journal of Mechanical Science and Technology, 2015, 29(4): 1607-1618.
[17]FILIPPI M, ZAPPINO E, CARRERA E. Multidimensional Models for Double-Swept Helicopter Blades[J]. AIAA Journal, 2019, 57(6): 2609-2616.
[18]DATTA A, JOHNSON W. Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis[C]∥American Helicopter Society 65th Annual Forum Proceedings, Grapevine, 2009:65-2009-000330.
[19]DATTA A, JOHNSON W. A Multibody Formulation for Three Dimensional Brick Finite Element Based Parallel and Scalable Rotor Dynamic Analysis[C]∥American Helicopter Society 66th Annual Forum, Phoenix, 2010:66-2010-000246.
[20]SRARUK W, CHOPRA I, DATTA A. Three-dimensional CAD-Based Structural Modeling for Next Generation Rotor Dynamic Analysis[C]∥American Helicopter Society 70th Annual Forum. Quebec, 2014:70-2014-0038.
[21]SRARUK W, DATTA A, CHOPRA I, et al. An Integrated Three-dimensional Aeromechanics Analysis of the NASA Tilt Rotor Aeroacoustic Model[J]. Journal of the American Helicopter Society, 2018, 63(3): 1-12.
[22]杨卫东, 张呈林, 王适存. 后掠桨尖旋翼气弹响应及载荷分析[J]. 南京航空航天大学学报, 1998 , 30 (1): 52-58.
YANG Weidong, ZHANG Chenglin, WANG Shicun. Response and Loads Analysis of Helicopter Rotor Blades with Swept Tips[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1998, 30 (1): 52-58.
[23]王俊毅, 招启军, 肖宇. 基于CFD/CSD耦合方法的新型桨尖旋翼气动弹性载荷计算[J]. 航空学报, 2014, 35(9): 2426-2437.
WANG Junyi, ZHAO Qijun, XIAO Yu. Calculations on Aeroelastic Loads of Rotor with Advanced Blade-tip Based on CFD/CSD Coupling Method[J]. Acta Aeronauticaet Astronautica Sinica, 2014, 35(9): 2426-2437.
[24]马砾, 招启军, 赵蒙蒙,等. 基于CFD/CSD耦合方法的旋翼气动弹性载荷计算分析[J]. 航空学报, 2017, 38(6): 1-14.
MA Li, ZHAO Qijun, ZHAO Mengmeng, WANG Bo. Computation Analyses of Aeroelastic Loads of Rotor Based on CFD/CSD Coupling Method[J]. Acta Aeronauticaet Astronautica Sinica, 2017, 38(6): 1-14.
[25]DATTA A,NIXON M, CHOPRA I. Review of Rotor Loads Prediction with the Emergence of Rotorcraft CFD[J]. Journal of the American Helicopter Society. 2007, 52 (4): 287-317.
[26]DATTA A, CHOPRA I. Prediction of UH-60 Main Rotor Structural Loads Using CFD/Comprehensive Analysis Coupling[J]. Journal of the American Helicopter Society, 2008, 53 (4): 351-365.
[27]DATTA A. X3D—a 3D Solid Finite Element Multibody Dynamic Analysis for Rotorcraft[C]∥American Helicopter Society Technical Meeting on Aeromechanics Design for Vertical Lift. San Francisco, 2016: 20-22.
[28]PATIL M, ARIAS P, BAEDER J, et al. An Integrated Three-dimensional Aeromechanical Analysis of Lift Offset Coaxial Rotors[C]∥The Vertical Flight Societys 78th Annual Forum. Fort Worth, 2022:F-0078-2022-17518.
[29]BABUSKA I, SURI M. On Locking and Robustness in the Finite Element Method[J]. SIAM Journal on Numerical Analysis, 1992, 29(5): 1261-1293.
[30]BATHE K J. Finite Element Procedures[M]. Watertown:Prentice-Hall, Pearson Education, Inc., 2006.
[31]BLACKER T D, OWEN S J, STATEN M L, et al. CUBIT Geometry and Mesh Generation Toolkit 15.2 User Documentation[M]. Albuquerque:Sandia National Laboratories, 2016.
[32]CHI C, DATTA A, CHOPRA I, et al. Three-dimensional Strains on Twisted and Swept Composite Rotor Blades in Vacuum[J]. Journal of Aircraft, 2021, 58(1): 1-16.
|