中国机械工程 ›› 2023, Vol. 34 ›› Issue (21): 2548-2567,2576.DOI: 10.3969/j.issn.1004-132X.2023.21.004
任勇生;姚东辉;张金峰
出版日期:
2023-11-10
发布日期:
2023-11-29
作者简介:
任勇生,男,1956年生,教授、博士研究生导师。研究方向为机械系统动力学、非线性振动和复合材料力学。发表论文170余篇。E-mail:renys@sdust.edu.cn。
基金资助:
REN Yongsheng;YAO Donghui;ZHANG Jinfeng
Online:
2023-11-10
Published:
2023-11-29
摘要: 金属切削系统通常带有鲜明的时滞特征。颤振是广泛存在于金属切削加工过程的一种高度复杂动力学现象,而颤振预测是实现稳定切削的前提。从切削系统颤振预测的理论、在线监测方法,以及各种影响因素等方面对金属切削动力学研究的进展进行评述,简要介绍了不同材料在机床结构动力学设计中的应用研究进展,指出了存在的问题及其今后的研究方向。
中图分类号:
任勇生, 姚东辉, 张金峰. 时滞金属切削系统颤振的研究进展[J]. 中国机械工程, 2023, 34(21): 2548-2567,2576.
REN Yongsheng, YAO Donghui, ZHANG Jinfeng. Research Advances in Chatter of Metal Cutting Systems Involving Time Delays[J]. China Mechanical Engineering, 2023, 34(21): 2548-2567,2576.
[1]WIERCIGROCH M, KRIVTSOV A M. Frictional Chatter in Orthogonal Metal Cutting[J]. Philosophical Transactions of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences, 2001, 359:713-738. [2]DAVIESM A, BURNS T J. Thermomechanical Oscillations in Material Flow during High-speed Machining[J]. Philosophical Transactions of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences, 2001, 359:821-846. [3]ALTINTAS Y. Manufacturing Automation, Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design[M]. Cambridge, USA:Cambridge University Press, 2000. [4]QUINTANA G, CIURANA J. Chatter in Machining Processes:a Review[J]. International Journal of Machine Tools and Manufacture, 2011, 51:363-376. [5]MUHAMMADB B, WAN M, FENG J, et al. Dynamic Damping of Machining Vibration:a Review[J]. International Journal of Advanced Manufacturing Technology, 2017, 89:2935-2952. [6]YUE C, GAO H, LIU X, et al. A Review of Chatter Vibration Research in Milling[J]. Chinese Journal of Aeronautics, 2019, 32(2):215-242. [7]ZHU L, LIU C. Recent Progress of Chatter Prediction, Detection and Suppression in Milling[J]. Mechanical Systems and Signal Processing, 2020, 143:106840. [8]ALTINTAS Y, BUDAK E. Analytical Prediction of Stability Lobes in Milling[J]. CIRP Annals:Manufacturing Technology, 1995, 44(1):357-62. [9]ALTINTAS Y. Analytical Prediction of Three Dimensional Chatter Stability in Milling[J]. JSME International Journal, Series C, Mechanical Systems, Machine Elements and Manufacturing, 2001, 44(3):717-23. [10]BUDAK E, ALTINTAS Y. Analytical Prediction of Chatter Stability in Milling—Part Ⅱ:Application of the General Formulation to Common Milling Systems[J]. Journal of Dynamic Systems, Measurement & Control, Transactions of the ASME, 1998, 120(1):31-36. [11]WANG M, GAO L, ZHENG Y. Prediction of Regenerative Chatter in the High-speed Vertical Milling of Thin-walled Workpiece Made of Titanium Alloy[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(5/8):707-716. [12]SHI Y, MAHR F, WAGNER U V, et al. Gyroscopic and Mode Interaction Effects on Micro-end Mill Dynamics and Chatter Stability[J]. International Journal of Advanced Manufacturing Technology, 2013, 65(5/8):895-907. [13]TAJALLIS A, MOVAHHEDY M R, AKBARI J. Chatter Instability Analysis of Spinning Micro-end Mill with Process Damping Effect via Semi-discretization Approach[J]. Acta Mechanica, 2014, 225(3):715-34. [14]任勇生, 马伯乐, 马静敏. 考虑刀杆结构非线性的铣削过程颤振稳定性与主共振[J]. 振动与冲击, 2019, 38(23):62-69. REN Yongsheng, MA Bole, MA Jingmin. Flutter Stability and Main Resonance of a Milling System Considering Structural Nonlinearity of Cutter Bar[J]. Journal of Vibration and Shock, 2019, 38(23):62-69. [15]OPITZ H, BERNARDI F. Investigation & Calculation of the Chatter Behavior of Lathes & Milling Machines[J]. CIRP Annals, 1969, 18:335-343. [16]MINIS I, YANUSHEVSKY R. A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling[J]. Journal of Engineering for Industry, 1993, 115:1-8. [17]BUDAK E. Mechanics and Dynamics of Milling Thin Walled Structures[D]. Vancouver:the University of British Columbia, 1994. [18]ALTINTAS Y, SHAMOTO E, LEE P, et al. Analytical Prediction of Stability Lobes in Ball End Milling[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1999, 121(4):586-592. [19]GRADISEK J, GOVEKAR E, GRABEC I, et al. On Stability Prediction for Low Radial Immersion Milling[J]. Machining Science and Technology, 2005, 9(1):117-130. [20]MERDOL S D, ALTINTAS Y. Multi Frequency Solution of Chatter Stability for Low Immersion Milling[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2004, 126:459-466. [21]COMAK A, OZSAHIN O, ALTINTAS Y. Stability of Milling Operations with Asymmetric Cutter Dynamics in Rotating Coordinates[J]. J. Manuf. Sci. Eng., 2016, 138(8):081004. [22]MOHAMMADI Y, AHMADI K. Frequency Domain Analysis of Regenerative Chatter in Machine Tools with Linear Time Periodic Dynamics[J]. Mech. Syst. Signal Process., 2019, 120:378-391. [23]WANG C, ZHANG X, LIU Y, et al. Stiffness Variation Method for Milling Chatter Suppression via Piezoelectric Stack Actuators[J]. Int. J. Mach. Tools Manuf., 2018, 124:53-66. [24]ALLENM S, SRACIC M W, CHAUHAN S, et al. Output-only Modal Analysis of Linear Time-periodic Systems with Application to Wind Turbine Simulation Data[J]. Mech. Syst. Sig. Process., 2011, 25 (4):1174-1191. [25]SIDDIQI A. Identification of the Harmonic Transfer Functions of a Helicopter Rotor[D]. Philadelphia:Massachusetts Institute of Technology, 2001. [26]DEFANT F, ALBERTELLI P. A Novel Harmonic Solution for Chatter Stability of Time Periodic Systems[J]. J. Sound Vib., 2021,490:115719. [27]BACHRATHY D, STPN G. Bisection Method in Higher Dimensions and the Efficiency Number[J]. Period. Polytech. Mech. Eng., 2012, 56 (2):81-86. [28]DOMBOVARI Z, STEPAN G. The Effect of Helix Angle Variation on Milling Stability[J]. Journal of Manufacturing Science and Engineering, 2012, 134(5):051015. [29]BACHRATHY D, STEPAN G. Improved Prediction of Stability Lobes with Extended Multi Frequency Solution[J]. CIRP Annals, 2013, 62(1):411-414. [30]DEFANT F, GHEZZI D, ALBERTELLI P. Development of a Generalized Extended Harmonic Solution for Analyzing the Combination of Chatter Suppression Techniques in Milling[J]. Journal of Sound and Vibration, 2023, 543:117368. [31]INSPERGER T, STEPAN G. Semi-discretization Method for Delayed Systems[J]. International Journal for Numerical Methods in Engineering, 2002, 55(5):503-518. [32]INSPERGER T, STEPAN G. Updated Semi-discretization Method for Periodic Delay-differential Equations with Discrete Delay[J]. International Journal for Numerical Methods in Engineering, 2004, 61(1):117-141. [33]DING Y, ZHU L, ZHANG X, et al. A Full-discretization Method for Prediction of Milling Stability[J]. International Journal of Machine Tools and Manufacture, 2010, 50:502-509. [34]INSPERGER T. Full-discretization and Semi-discretization for Milling Stability Prediction:Some Comments[J]. International Journal of Machine Tools & Manufacture, 2010, 50(7):658-662. [35]BAYLY P V, HALLEY J E, MANN B P, et al. Stability of Interrupted Cutting by Temporal Finite Element Analysis[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125(2):220-225. [36]PATEL B R, MANN B P, YOUNG K A. Uncharted Islands of Chatter Instability in Milling[J]. International Journal of Machine Tools and Manufacture, 2008, 48(1):124-134. [37]SIMS N D, MANN B, HUYANAN S. Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools[J]. Journal of Sound &Vibration, 2008, 317(3):664-686. [38]姜燕, 郭强, 赵波. 铣削稳定性预测的时间有限元法[J]. 河南大学学报(自然科学版), 2016, 35(5):672-676. JIANG Yan, GUO Qiang, ZHAO Bo. The Method on the Stability Limit Prediction for Milling Process Based on Time Finite Element Eheory[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(5):672-676. [39]MANN B P, PATEL B R. Stability of Delay Equations Written as State Space Models[J]. Journal of Vibration and Control, 2010, 16:1067-1085. [40]ALTINTAS Y, CAMPOANES M. An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125:416-422. [41]LU X H, JIA Z, WANG H, et al. Stability Analysis for Micro-milling Nickel-based Super Alloy Process[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(9/12):2503-2515. [42]WAN M, ZHANG W H, DANG J W, et al. A Unified Stability Prediction Method for Milling Process with Multiple Delays[J]. International Journal of Machine Tools and Manufacture, 2010, 50(1):29-41. [43]LI H Z, LI X P, CHEN X Q. A Novel Chatter Stability Criterion for the Modelling and Simulation of the Dynamic Milling Process in the Time Domain[J]. International Journal of Advanced Manufacturing Technology, 2003, 22(9/10):619-625. [44]QU S, ZHAO J, WANG T. Three-dimensional Stability Prediction and Chatter Analysis in Milling of Thin-walled Plate[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(5/8):2291-2300. [45]NIU J B, DING Y, ZHU L M, et al. Runge-Kutta Methods for a Semi-analytical Prediction of Milling Stability[J]. Nonlinear Dynamics, 2014, 76(1):289-304. [46]ZHANG Z, LI H, MENG G, et al. A Novel Approach for the Prediction of the Milling Stability Based on the Simpson Method[J]. International Journal of Machine Tools and Manufacture, 2015, 99:43-47. [47]ZATARAIN M, ALVAREZ J, BEDIAGA I, et al. Implicit Subspace Iteration as an Efficient Method to Compute Milling Stability Lobe Diagrams[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(1/4):597-607. [48]ZHANG Z, LI H, MENG G, et al. Milling Chatter Suppression in Viscous Fluid:a Feasibility Study[J]. International Journal of Machine Tools and Manufacture, 2017, 120:20-26. [49]KOLLURU K, AXINTE D. Coupled Interaction of Dynamic Responses of Tool and Workpiece in Thin Wall Milling[J]. Journal of Materials Processing Technology, 2013, 213:1565-1574. [50]GONZLEZ-BRAMBILA O, RUBIO E, JURE-GUI J C, et al. Chattering Detection in Cylindrical Grinding Processes Using the Wavelet Transform[J]. International Journal of Machine Tools and Manufacture. 2006, 46:1934-1938. [51]HUANG P, LI J, SUN J, et al. Vibration Analysis in Milling Titanium Alloy Based on Signal Processing of Cutting Force[J]. International Journal of Advanced Manufacturing Technology, 2013, 64:613-621. [52]BUDAK E, ALTINTAS Y, ARMAREGO E J A. Prediction of Milling Force Coefficients from Orthogonal Cutting Data[J]. Journal of Manufacturing Science and Engineering, 1996, 118(2):216-224. [53]GROSSI N, SALLESE L, SCIPPA A, et al. Chatter Stability Prediction in Milling Using Speed-varying Cutting Force Coefficients[J]. Procedia CIRP, 2014, 14:170-175. [54]RAFANELLI F, CAMPATELLI G, SCIPPA A. Effects of Cutting Conditions on Forces and Force Coefficients in Plunge Milling Operations[J]. Advances in Mechanical Engineering, 2015, 7(6):1-9. [55]岳彩旭, 高海宁, 刘献礼. 基于动态切削力系数的插铣加工过程稳定性研究[J]. 机械工程学报, 2017, 53(17):193-201. YUE C X, GAO H N, LIU X L. Research on the Stability of the Machining Process Based on the Dynamic Cutting Force Coefficient[J]. Journal of Mechanical Engineering, 2017, 53(17):193-201. [56]LIU X, GAO H, YUE C. Investigation of the Milling Stability Based on Modified Variable Cutting Force Coefficients[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(9/12):2991-3002. [57]SHIRASE K, ALTINTAS Y. Cutting Force and Dimensional Surface Error Generation in Peripheral Milling with Variable Pitch Helical End Mills[J]. International Journal of Machine Tools and Manufacture, 1996, 36 (5):567-584. [58]BUDAK E. An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part I:Theory[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125 (1):29-34. [59]BUDAK E. An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part 2:Application[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125 (1):35-38. [60]TURNER S, MERDOL D, ALTINTAS Y, et al. Modelling of the Stability of Variable Helix End Mills[J]. International Journal of Machine Tools and Manufacture, 2007, 47 (9):1410-1416. [61]AZELINIA H, OLGAC N. New Perspective in Process Optimization of Variable Pitch Milling[J]. International Journal of Materials and Product Technology, 2009, 35 (1/2):47-63. [62]SELLMEIER V, DENKENA B. Stable Islands in the Stability Chart of Milling Processes due to Unequal Tooth Pitch. International[J]. Journal of Machine Tools & Manufacture, 2011, 51(2):152-164. [63]INSPERGER T, MUNOA J, ZATARAIN M, et al. Unstable Islands in the Stability Chart of Milling Processes Due to the Helix Angle[C]∥CIRP 2nd International Conference on High Performance Cutting. Vancouver, 2006:139126377. [64]YUSOFF A R, TURNER S, TAYLOR C M, et al. The Role of Tool Geometry in Process Damped Milling[J]. International Journal of Advanced Manufacturing Technology, 2010, 50(9/12):883-895. [65]FARAHANI, N D, ALTINTAS, Y. Chatter Stability of Serrated Milling Tools in Frequency Domain[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144(3):031013. [66]KOCA R, BUDAK E. Optimization of Serrated End Mills for Reduced Cutting Energy &Higher Stability[J]. Procedia CIRP, 2013, 8:570-575. [67]GRABOWSKI R, DENKENA B, KHLER J. Prediction of Process Forces and Stability of End Mills with Complex Geometries [J]. Procedia CIRP, 2014, 14:119-124. [68]MANCISIDOR I, URKIOLA A, BARCENA R, et al. Receptance Coupling for Tool Point Dynamic Prediction by Fixed Boundaries Approach[J]. International Journal of Machine Tools & Manufacture, 2014, 78:18-29. [69]SCHMITZT L, DAVIES M A, KENNEDY M D. Tool Point Frequency Response Prediction for High-speed Machining by RCSA[J]. Journal of Manufacturing Science & Engineering, 2001, 123(4):700-707. [70]SCHMITZT L, DONALSON R R. Predicting High-speed Machining Dynamics by Substructure Analysis[J]. CIRP Annals, 2000, 49(1):303-308. [71]SCHMITZT L. Torsional and Axial Frequency Response Prediction by RCSA[J]. Precision Engineering, 2010, 34(2):345-356. [72]王二化, 吴波, 胡友民, 等.主轴-刀柄-刀具系统刀尖频响函数的预测方法研究[J]. 振动与冲击, 2015, 34(13):83- 88. WANG E H, WU B, HU Y M, et al. Tool Nose FRF Prediction of a Spindle-holder-tool System[J]. Journal of Vibration and Shock, 2015, 34(13):83-88. [73]MANCISIDOR I, ZATARAIN M, MUMOA J, et al. Fixed Boundaries Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction[J]. Advanced Materials Research, 2011, 223:622- 631. [74]MANCISIDOR I, URKIOLA A, BARCENA R, et al. Receptance Coupling for Tool Point Dynamic Prediction by Fixed Boundaries Approach[J]. International Journal of Machine Tools and Manufacture, 2014, 78:18-29. [75]ERTURK A, OZGUVEN HN, Budak E. Analytical Modeling of Spindle-Tool Dynamics on Machine Tools Using Timoshenko Beam Model & Receptance Coupling for the Prediction of Tool Point FRF[J]. International Journal of Machine Tools & Manufacture, 2006, 46(15):1901-1912. [76]ZHANG C J, REN Y S, JI S J, et al. Analysis of the Composite Boring Bar Dynamic Characteristics Considering Shear Deformation and Rotational Inertia[J]. Applied Sciences-Basel, 2020, 10(4):1-17. [77]LI D H, CAO H R, LIU J X, et al. Milling Chatter Control Based on Asymmetric Stiffness[J]. International Journal of Machine Tools & Manufacture, 2019, 147, 103458. [78]刘圣前.考虑离心力和陀螺效应的微铣削稳定性研究[D]. 大连:大连理工大学, 2018. LIU Shengqian. Research on Stability for Micro-milling with Centrifugal Force and Gyroscopic Effect[D]. Dalian:Dalian University of Technology, 2018. [79]孙超.基于刀具和工件刚度特性的钛合金薄壁件切削稳定性研究[D]. 济南:山东大学, 2012. SUN Chao. Study on Machining Stability of Titanium Alloy Thin-walled Components Considering the Flexibility of Workpiece and Tool[D]. Jinan:Shandong University, 2012. [80]KOLLURUK, AXINTE D. Coupled Interaction of Dynamic Responses of Tool and Workpiece in Thin Wall Milling[J]. Journal of Materials Processing Technology, 2013, 213 ( 9):1565 -1574. [81]TLUSTY J, SMITH S, WINFOUGH W R. Techniques for the Use of Long Slender End Mills in High-speed Milling[J]. CIRP Annals, 1996, 45(1):393-396. [82]BRAVO U, ALTUZARRA O, LPEZ DE LACALLE L N, et al. Stability Limits of Milling Considering the Flexibility of the Workpiece & the Machine[J]. International Journal of Machine Tools & Manufacture, 2005, 45(15):1669-1680. [83]ALAN S, BUDAK E, OZGUVEN H N. Analytical Prediction of Part Dynamics for Machining Stability Analysis[J]. International Journal of Automation Technology, 2010, 4(3):259-267. [84]THEVENOT V, ARNAUD L, DESSEIN G, et al. Integration of Dynamic Behaviour Variations in the Stability Lobes Method:3D Lobes Construction &Application to Thin-walled Structure Milling[J]. The International Journal of Advanced Manufacturing Technology, 2006, 27(7/8):638-644. [85]GRAHAM E, MEHRPOUYA M, PARK S S. Robust Prediction of Chatter Stability in Milling Based on the Analytical Chatter Stability[J]. Journal of Manufacturing Processes, 2013, 15:508-517. [86]YANG Y, ZHANG W H, MA Y C, et al. Chatter Prediction for the Peripheral Milling of Thin-walled Workpieces with Curved Surfaces[J]. Journal of Machine Tools & Manufacture, 2016, 109:36-48. [87]YANG Y, ZHANG W H, MA Y C, et al. An efficient Decomposition-condensation Method for Chatter Prediction in Milling Large-scale Thin-walled Structures[J]. Mechanical Systems and Signal Processing, 2019, 121:58-76. [88]GENTA G. Dynamics of Rotating Systems[M]. New York:Springer, 2005 [89]SONG Q, LIU Z, WAN Y, et al. Instability of Internal Damping due to Collet Chuck Holder for Rotating Spindle-holder-tool System[J]. Mechanism and Machine Theory, 2016, 101:95-115 [90]王玉松. 基于内阻尼的高速铣削刀具-主轴系统动力学建模及稳定性分析[D]. 济南:山东大学, 2014. WANG Yusong. Dynamic Modeling &Stability Analysis of High Speed Milling Tool-spindle System with Internal Damping[D]. Jinan:Shandong University, 2014. [91]REN Y S, ZHANG Y H. Investigation of Chatter Stability of Cutting Process with a Rotating Tapered Cutter Bar Considering Internal and External Damping[J]. International Journal of Advanced Manufacturing Technology, 2020, 107(3/4):1755-1771. [92]SISSON T R, KEGG R L. An Explanation of Low-speed Chatter Effects[J]. Journal of Manufacturing Science and Engineering, 1969, 91(4):951-8. [93]ALTINTAS Y, WECK M. Chatter Stability of Metal Cutting &Grinding[J]. CIRP Annals, 2004, 53(2):619-642. [94]史丽晨, 张倩, 刘腾飞, 等. 基于过程阻尼的钛合金丝材表面车削精整加工稳定性研究[J]. 中国机械工程, 2023, 34(16):1936-1945. SHI Lichen, ZHANG Qian, LIU Tengfei, et al. Study on Stability of Surface Turning Finishing Processes of Titanium Alloy Wires Based on Process Damping[J]. China Mechanical Engineering, 2023, 34(16):1936-1945. [95]秦国华, 娄维达, 吴竹溪, 等. 基于过程阻尼和结构模态耦合的铣削稳定性分析与实验验证[J]. 中国科学(技术科学), 2020, 50(9):1211-1225. QIN Guohua, LU Weida, WU Zhuxi, et al. Milling Stability Analysis and Validation Based on the Coupling of Process Damping and Structural Mode[J]. Scientia Sinica Technologica, 2020, 50(9):1211-1225. [96]INAMURA T, SATA T. Stability Analysis of Cutting under Varying Spindle Speed[J]. CIRP Annals, 1974, 23(1):119-120. [97]HOSHI T, SATO M, SAKISAKA N, et al. Study of Practical Application of Fluctuating Speed Cutting for Regenerative Chatter Control[J]. CIRP Annals, 1977, 25(1):175-179. [98]JIN G, QI H, LI Z, et al. Dynamic Modeling and Stability Analysis for the Combined Milling System with Variable Pitch Cutter and Spindle Speed Variation[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 63:38-56. [99]SASTRY S, KAPOOR S G, DEVOR R E. Floquet Theory Based Approach for Stability Analysis of the Variable Speed Face-milling Process[J]. Journal of Manufacturing Science & Engineering, Transactions of the ASME 2002, 124(1):10-17. [100]ZATARAIN M, BEDIAGA I, MUNOA J, et al. Stability of Milling Processes with Continuous Spindle Speed Variation:Analysis in the Frequency and Time Domains, and Experimental Correlation[J]. CIRP Annal—Manuf. Technol., 2008, 57(1):379-84. [101]BEDIAGA I, ZATARAIN M, MUNOA J, et al. Application of Continuous Spindle Speed Variation for Chatter Avoidance in Roughing Milling[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2011, 225(5):631-640. [102]AL REGIB E, NI J, LEE S H. Programming Spindle Speed Variation for Machine Tool Chatter Suppression[J]. International Journal of Machine Tools & Manufacture, 2003, 43:1229-1240. [103]SEGUY S, INSPERGER T, ARNAUD L, et al. On the Stability of High-speed Milling with Spindle Speed Variation[J]. International Journal of Advanced Manufacturing Technology, 2010, 48(9/12):883-895. [104]SEGUY S, INSPERGER T, ARNAUD L, et al. Suppression of Period Doubling Chatter in High-speed Milling by Spindle Speed Variation[J]. Machining Science and Technology, 2011, 15(2):153-171. [105]NIU J, DING Y, ZHU L M, et al. Stability Analysis of Milling Processes with Periodic Spindle Speed Variation via the Variable Step Numerical Integration Method[J]. Journal of Manufacturing Science & Engineering, Transactions of the ASME, 2016, 138(11):114501. [106]BEDIAGA I, ZATARAIN M, MUNOA J, et al. Application of Continuous Spindle Speed Variation for Chatter Avoidance in Roughing Milling[J]. Proc. Inst. Mech. Eng. B, 2011, 225:631-640. [107]MUNOA J, BEUDAERT X, DOMBOVARI Z, et al. Chatter Suppression Techniques in Metal Cutting[J]. CIRP Annals Manufacturing Technology, 2016, 65:785-808. [108]陈丁. 弱刚性构件铣削动力学建模与颤振抑制方法研究[D]. 武汉:华中科技大学, 2022. CHEN Ding. Research on Dynamic Modeling and Chatter Suppression for Milling of Weak-rigid Parts[D]. Wuhan:Huazhong University of Science and Technology, 2022. [109]ASHBY M F. Multi-objective Optimization in Material Design and Selection[J]. Acta Materialia, 2000, 48:359-369. [110]TAKEYAMA H, LIJIMA N, NISHIWAKI N, et al. Improvement of Dynamic Rigidity of Tool Holder by Applying High-damping Material[J]. CIRP Annals, 1984, 33(1):249-252. [111]VANDEURZEN U, SNOEYS R, PETERS J. Additive Damping Treatments for Mechanical Structures[J]. CIRP Annals, 1981, 30(1):269-274. [112]BAIKS-H. High Damping Fe-Mn Martensitic Alloys for Engineering Applications[J]. Nuclear Engineering and Design, 2000, 198:241-252. [113]KIMH S, PARK K Y, LEE D G. A Study on the Epoxy Resin Concrete for the Ultra-precision Machine Tool Bed[J]. Journal of Materials Processing Technology, 1995, 48:649-655. [114]KULISEK V, JANOTA M, RUZICKA M, et al. Application of Fiber Composites in a Spindle Ram Design[J]. Journal of Machine Engineering, 2013, 13(1):7-23. [115]LEE D G, CHANG S H, KIM H S. Damping Improvement of Machine Tool Columns with Polymer Matrix Fiber Composite Material[J]. Composite Structures, 1998, 43:155-163. [116]SUH J D, LEE D G. Composite Machine Tool Structures for High Speed Milling Machines[J]. Annals of the CIRP, 2002, 51(1):285-288. [117]CHANG S H, KIM P J, LEE D G, et al. Steel-composite Hybrid Headstock for High-precision Grinding Machines[J]. Composite Structures, 2011, 53:1-8. [118]LEE D G, SIN H C, SUH N P. Manufacturing of a Graphite Epoxy Composite Spindle for a Machine Tool[J]. Annals of the CIRP, 1985, 34(1):365-369. [119]LEE D G, HWANG H Y, KIM J K. Design and Manufacture of a Carbon Fiber Epoxy Rotating Boring Bar[J]. Composite Structures, 2003, 60:115-124. [120]GHORBANI S, ROGOV V A, CARLUCCIO A, et al. The Effect of Composite Boring Bars on Vibration in Machining Process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1/4):1157-1174. [121]FU Q, LORITE G S, RASHID M M, et al. Suppressing Tool Chatter with Novel Multi-layered Nanostructures of Carbon Based Composite Coatings[J]. Journal of Materials Processing Technology, 2015, 223:292-298. [122]王军, 吴凤和, 韩亚丽, 等. 层状复合结构镗刀杆设计与性能研究[J]. 中国机械工程, 2013, 24(6):711-715. WANG Jun, WU Fenghe, HAN Yali, et al. Boring Bar Design with Laminar Composite Structure and Research on Properties[J]. China Mechanical Engineering, 2013, 24(6):711-715. [123]ZHANG Y H, REN Y S, TIAN J S, et al. Chatter Stability of the Constrained Layer Damping Composite Boring Bar in Cutting Process[J]. Journal of Vibration and Control, 2019, 25(16):2204-2214. [124]任勇生, 张玉环, 张金峰. 具有内阻的旋转锥形复合材料刀杆铣削过程稳定性的仿真分析[J/OL]. 工程力学, 2022, https:∥kns. cnki. net/kcms/detail/11. 2595. O3. 20221024. 1520. 180. html REN Y S, ZHANG Y H, ZHANG J F. Analytical Instability of Milling withRotating Tapered Composite Tool Considering Internal Damping[J]. Engineering Mechanics, 2022, https:∥kns. cnki. net/kcms/detail/11. 2595. O3. 20221024. 1520. 180. html. [125]TANAKA H, OBATA F, MATSUBARA T, et al. Active Chatter Suppression of Slender Boring Bar Using Piezoelectric Actuators[J]. JSME International Journal Ser. C Dynamics Control Robotics Design &Manufacturing, 1994, 37(3):601-606. [126]MEI D Q, KONG T R, SHIH A, et al. Magnetorheological Fluid-controlled Boring Bar for Chatter Suppression[J]. Journal of Materials Processing Technology, 2009, 209:1861-1870. [127]MEI D Q, YAO Z H, KONG T R, et al. Parameter Optimization of Time-varying Stiffness Method for Chatter Suppression Based on Magnetorheological Fluid-controlled Boring Bar[J]. International Journal of Advanced Manufacturing Technology, 2010, 46(9/12):1071-1083. [128]YAO Z H, MEI D Q, CHEN Z C. Chatter Suppression by Parametric Excitation:Model and Experiments[J]. Journal of Sound & Vibration, 2011, 330(13):2995-3005. [129]王民, 费仁元. 切削系统可变刚度结构及其颤振控制方法的研究[J]. 机械工程学报2002, 38(增):219-222. WANG Min, FEI Renyuan. Research of Variable-stiffness Structure and Varying Stiffness Method on Chatter Control[J]. Journal of Mechanical Engineering, 2002, 38(S):219-222. [130]王民, 费仁元. 基于电流变材料的切削颤振在线监控技术研究[J]. 机械工程学报, 2002, 38(12):93-97. WANG Min, FEI Renyuan. Research on Monitored Control of Machining Chatter Based on Electrorheological Fluids[J]. Journal of Mechanical Engineering, 2002, 38(12):93-97. [131]WANG M, FEI R Y. Improvement of Machining Stability Using a Tunable-stiffness Boring Bar Containing an Electrorheological Fluid[J]. Smart Materials and Structures, 1999, 8:511-514. [132]WANG M, FEI R Y. Chatter Suppression Based on Nonlinear Vibration Characteristic of Electrorheological Fluids[J]. International Journal of Machine Tools & Manufacture, 1999, 39:1925-1934. [133]WANG M, FEI R Y. On-line Chatter Detection and Control in BoringBased on an Electrorheological Fluid[J]. Mechatronics, 2001, 11(7):779-792. [134]WEINERT K, KERSTING M. Adaptronic Chatter Damping System for Deep Hole Drilling[C]∥ CIRP International Conference on Smart Machining Systems, NIST National Institute of Standards and Technologies (NIST), 13-15 March, 2007, Gaithersburg, MD. [135]MONNIN J, KUSTER F, WEGENER K. Optimal Control for Chatter Mitigation in Milling-Part 1:Modeling &Control Design[J]. Control Engineering Practice, 2004, 24:156-166. [136]MONNIN J, KUSTER F, WEGENER K. Optimal Control for Chatter Mitigation in Milling—Part 2:Experimental Validation[J]. Control Engineering Practice, 2014, 24:167-175. [137]DENKENA B, GUMMER O. Process stabilization with an Adaptronic Spindle System[J]. Production Engineering, 2012, 6(4/5):485-492. [138]BORGHETTI M, SERPELLONI M, SARDINI E, et al. Mechanical Behavior of Strain Sensors Based on PEDOT:PSS and Silver Nanoparticle Sinks Deposited on Polymer Substrate by Inkjet Printing[J]. Sensors and Actuators A, 2016, 243:71-80. [139]CHO C, RYUH Y. Fabrication of Flexible Tactile Force Sensor Using Conductive Ink and Silicon Elastomer[J]. Sensors and Actuators A, 2016, 237:72-80. [140]DEBDA H, LUCAT C, POMMIER-BUDINGER V. Printed Piezoelectric Materials for Vibration-based Damage Detection[J]. Procedia Engineering, 2016, 168:708-712. [141]ENSER H, KULHA P, SELL J K, et al. Printed Strain Gauges Embedded in Organic Coatings[J]. Procedia Engineering, 2016, 168:822-825. [142]HAY G I, SOUTHEE D J, EVANS P S A, et al. Examination of Silver-graphite Lithographically Printed Resistive Strain Sensors[J]. Sensors and Actuators A, 2007, 135:534-546. [143]ZHANG Y, ANDERSON N, BLAND S, et al. All-printed Strain Sensors:Building Blocks of the Aircraft Structural Health Monitoring System[J]. Sensors and Actuators A, 2017, 253:165-172. [144]ZELENY R, VCELAK J. Strain Measuring 3D Printed Structure with Embedded Fibre Bragg Grating[J]. Procedia Engineering, 2016, 168:1338-1341. |
[1] | 胡超, 刘佐民. 基于材料匹配性的球轴承Heathcote黏-滑模型研究 [J]. J4, 201016, 21(16): 1969-1973. |
[2] | 彭子伟, 王寅成, 杨力, 樊自田. 三头挤出成形氧化铝基陶瓷的精度研究[J]. 中国机械工程, 2024, 35(03): 481-486. |
[3] | 康仁科, 陆冰伟, 陈凯良, 李晟超, 戴晶滨, 董志刚鲍, 岩. 超声振动辅助磨削CFRP复合材料薄管撕裂损伤研究[J]. 中国机械工程, 2024, 35(03): 524-533,540. |
[4] | 张立峰, 王梓旭, 张旺通, 邓云飞, 隋翯, 郭志永. 单向陶瓷基复合材料C/SiC变角度顺逆磨的对比试验[J]. 中国机械工程, 2024, 35(02): 235-243. |
[5] | 朱福先, 仇刚, 朱兴民, 徐先宜, 周金宇. 碳玻混杂复合材料单钉单剪螺栓连接结构失效模式及渐进损伤分析[J]. 中国机械工程, 2023, 34(23): 2781-2793. |
[6] | 张其聪, 姜晨, 叶卉, 申岭鑫, 矫梦蝶. 动压辅助非牛顿流体抛光工具设计与工艺研究[J]. 中国机械工程, 2023, 34(23): 2805-2811,2823. |
[7] | 贾志新, 张凯悦, 王津. 聚晶金刚石的混铁粉电火花加工方法研究[J]. 中国机械工程, 2023, 34(22): 2684-2692. |
[8] | 张立峰, 张晓光. 微量润滑变角度高速铣削碳纤维增强复合材料的加工性能与材料去除机理[J]. 中国机械工程, 2023, 34(21): 2622-2628. |
[9] | 王明, 董海, 王柏何, 王峥, 王加威. 2.5D Cf/SiC刹车材料浮动磨削工艺试验研究[J]. 中国机械工程, 2023, 34(20): 2434-2441. |
[10] | 杨亮, 蔡桂喜, 刘芳, 李建奎. 碳纤维复合材料制孔结构超声无损检测及评价[J]. 中国机械工程, 2023, 34(19): 2327-2332. |
[11] | 柯庆镝, 罗俊友, 蒋守志, 黄海鸿, . 基于涂层材料分布状态的超声应力反演模型构建[J]. 中国机械工程, 2023, 34(18): 2230-2237. |
[12] | 闫东东, 胡宇博, 郎利辉, 秦成伟, 张三敏, 李勇. 大跨距复合材料结构弯曲载荷监测及定位方法[J]. 中国机械工程, 2023, 34(18): 2257-2267. |
[13] | 程基彬, 戴宁, 郭培, 熊继源, 叶世伟, 程筱胜. 基于力学超材料的柔性机械臂设计技术[J]. 中国机械工程, 2023, 34(16): 1900-1906. |
[14] | 迟玉伦, 武子轩. 基于磨削热变形分析的切入式外圆磨削去除率的修正模型与实验研究[J]. 中国机械工程, 2023, 34(15): 1778-1788. |
[15] | 王飞, 凤仪, 李新朝, 刘铸汉. Cu-Diamond复合材料的多次电弧烧蚀性能研究[J]. 中国机械工程, 2023, 34(13): 1599-1604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||