中国机械工程 ›› 2021, Vol. 32 ›› Issue (21): 2521-2531.DOI: 10.3969/j.issn.1004-132X.2021.21.001
张建勋1,2;姚斌1,2;代煜1,2;夏光明1,2
出版日期:
2021-11-10
发布日期:
2021-11-25
通讯作者:
代煜(通信作者),男,1981年生,教授、博士研究生导师。研究方向为面向手术机器人的智能感知技术。E-mail:daiyu@nankai.edu.cn。
作者简介:
张建勋,男,1961年生,教授、博士研究生导师。研究方向为医疗机器人技术、智能机器人控制等。E-mail:zhangjx@nankai.edu.cn。
基金资助:
ZHANG Jianxun1,2;YAO Bin1,2;DAI Yu1,2;XIA Guangming1,2
Online:
2021-11-10
Published:
2021-11-25
摘要: 为了推动机器人辅助腹腔镜手术中力感知技术的深入研究和临床应用,综述了其研究进展。针对有传感器的力感知,将其分为基于电信号和基于光信号两类,分析了传感器在手术器械上的位置分布、机械结构、测量范围、测量精度和电磁兼容性等关键指标,并讨论了其优势和局限;针对无传感器的力感知,将其分为基于视觉和基于动力学模型两类,并分析了其实现方法、技术障碍和误差来源。最后,展望了机器人辅助腹腔镜手术中力感知技术的发展趋势。
中图分类号:
张建勋, 姚斌, 代煜, 夏光明, . 机器人辅助腹腔镜手术中力感知技术的研究进展[J]. 中国机械工程, 2021, 32(21): 2521-2531.
ZHANG Jianxun, YAO Bin, DAI Yu, XIA Guangming, . A Review of Force Sensing Technology in Robot-assisted Laparoscopic Surgery[J]. China Mechanical Engineering, 2021, 32(21): 2521-2531.
[1]BROUWER I, USTIN J, BENTLEY L M, et al. Measuring in Vivo Animal Soft Tissue Properties for Haptic Modeling in Surgical Simulation[J]. Stud. Health Technol. Inform., 2001, 81:69-74. [2]OKAMURA A M. Haptic Feedback in Robot-assisted Minimally Invasive Surgery[J]. Current Opinion in Urology, 2009, 19(1):102-107. [3]付宜利, 李坤, 潘博, 等. 微创手术机器人力检测与力反馈技术研究现状[J]. 机器人, 2014, 36(1):117-128. FU Yili, LI Kun, PAN Bo, et al. A Survey of Force Sensing and Force Feedback Technology for Robot-assisted Minimally Invasive Surgical System[J]. Robot, 2014, 36(1):117-128. [4]SAUERLAND S, JASCHINSKI T, NEUGEBAUER E. Laparoscopic versus Open Surgery for Suspected Appendicitis[J]. Cochrane Database of Systematic Reviews, 2018(11):CD001546. [5]OKAMURA A M. Methods for Haptic Feedback in Teleoperated Robot-assisted Surgery[J]. Industrial Robot, 2004, 31(6):499-508. [6]DINESH V, SEAN C. Peer Review and Surgical Innovation:Robotic Surgery and Its Hurdles[J]. American Journal of Robotic Surgery, 2015, 2(1):39-44. [7]GWILLIAM J C, MAHVASH M, VAGVOLGYI B, et al. Effects of Haptic and Graphical Force Feedback on Teleoperated Palpation[C]∥ International Conference on Robotics and Automation. Kobe, 2009:677-682. [8]WAGNER C R, STYLOPOULOS N, JACKSON P G, et al. The Benefit of Force Feedback in Surgery:Examination of Blunt Dissection[J]. Presence:Teleoperators Virtual Environments, 2007, 16(3):252-262. [9]REILEY C E, AKINBIYI T, BURSCHKA D, et al. Effects of Visual Force Feedback on Robot-assisted Surgical Task Performance[J]. The Journal of Thoracic Cardiovascular Surgery, 2008, 135(1):196-202. [10]DEMI B, ORTMAIER T, SEIBOLD U. The Touch and Feel in Minimally Invasive Surgery[C]∥ IEEE International Workshop on Haptic Audio Visual Environments and Their Applications. Ottawa, 2005:8894919. [11]DARGAHI J, NAJARIAN S. An Endoscopic Force-position Sensor Grasper with Minimum Sensors[J]. Canadian Journal of Electrical Computer Engineering, 2003, 28(3):155-161. [12]PRASAD S K, KITAGAWA M, FISCHER G S, et al. A Modular 2-DOF Force-sensing Instrument for Laparoscopic Surgery[C]∥ Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Montreal, 2003:279-286. [13]FISCHER G S, AKINBIYI T, SAHA S, et al. Ischemia and Force Sensing Surgical Instruments for Augmenting Available Surgeon Information[C]∥ The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, 2006:1030-1035. [14]LI K, PAN B, ZHAN J, et al. Design and Performance Evaluation of a 3-axis Force Sensor for MIS Palpation[J]. Sensor Review, 2015, 35(2):219-228. [15]代煜, 张建勋. 基于小波变换和维纳滤波的半导体器件1/f噪声滤波 [J]. 物理学报, 2011, 60(11):185-190. DAI Yu, ZHANG Jianxun. Reduction of 1/f Noise in Semiconductor Devices Based on Wavelet Transform and Wiener Filter[J]. Acta Physica Sinica, 2011, 60(11):185-190. [16]孙会娇, 代煜, 张建勋, 等. 直流电源激励下的电路高分辨力应变信号处理 [J]. 仪器仪表学报, 2019, 40(8):184-190. SUN Huijiao, DAI Yu, ZHANG Jianxun, et al. High Resolution Strain Signal Processing for the Circuit under DC Source Excitation[J]. Chinese Journal of Scientific Instrument, 2019, 40(8):184-190. [17]SOKHANVAR S, PACKIRISAMY M, DARGAHI J. A Multifunctional PVDF-based Tactile Sensor for Minimally Invasive Surgery[J]. Smart Materials Structures, 2007, 16(4):989-998. [18]SOKHANVAR S, PACKIRISAMY M, DARGAHI J. MEMS Endoscopic Tactile Sensor:Toward In-situ and In-vivo Tissue Softness Characterization[J]. IEEE Sensors Journal, 2009, 9(12):1679-1687. [19]DAI Y, ABIRI A, LIU S, et al. Grasper Integrated Tri-axial Force Sensor System for Robotic Minimally Invasive Surgery[C]∥ 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). Jeju, 2017:3936-3939. [20]KIM U, KIM Y B, SO J, et al. Sensorized Surgical Forceps for Robotic-assisted Minimally Invasive Surgery[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12):9604-9613. [21]DARGAHI J, PARAMESWARAN M. A Micromachined Piezoelectric Tactile Sensor for an Endoscopic Grasper-theory, Fabrication and Experiments[J]. Journal of Microelectromechanical Systems, 2000, 9(3):329-335. [22]SEIBOLD U, HIRZINGER G. A 6-axis Forche/Torque Sensor Design for Haptic Feedback in Minimally Invasive Robotic Surgery[C]∥ 2nd VDE World Microtechnologies Congress. Munich, 2003:239-244. [23]KALANTARI M, RAMEZANIFARD M, AHMADI R, et al. A Piezoresistive Tactile Sensor for Tissue Characterization during Catheter-based Cardiac Surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(4):431-440. [24]BAKI P, SZEKELY G, KOSA G. Miniature Tri-axial Force Sensor for Feedback in Minimally Invasive Surgery[C]∥ 4th IEEE RAS & EMBS International Conference on Biomedical Robotics & Biomechatronics. Rome, 2012:12967935. [25]HWANG J H, KWON J H, KIM T K, et al. Design of Simple Structured Tactile Sensor for the Minimally Invasive Robotic Palpation[C]∥ IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, 2013:1296-1299. [26]LEE J, CHOI W, YOO Y K, et al. A Micro-fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor[J]. Sensors, 2014, 14(12):22199-22207. [27]KIM U, LEE D H, YOON W J, et al. Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery[J]. IEEE Transactions on Robotics, 2016, 31(5):1214-1224. [28]LEE D H, KIM U, GULREZ T, et al. A Laparoscopic Grasping Tool with Force Sensing Capability[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1):130-141. [29]HESSINGER M, PILIC T, WERTHSCHUTZKY R, et al. Miniaturized Force/Torque Sensor for in Vivo Measurements of Tissue Characteristics[C]∥ International Conference of the IEEE Engineering in Medicine & Biology Society. Orlando, 2016:2022-2025. [30]KIM U, KIM Y B, SEOK D, et al. A Surgical Palpation Probe with 6-axis Force/Torque Sensing Capability for Minimally Invasive Surgery[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2755-2765. [31]YU L, YAN Y, YU X, et al. Design and Realization of Forceps with 3-D Force Sensing Capability for Robot-assisted Surgical System[J]. IEEE Sensors Journal, 2018, 18(21):8924-8932. [32]PUANGMALI P, LIU H, SENEVIRATNE L, et al. Miniature 3-axis Distal Force Sensor for Minimally Invasive Surgical Palpation[J]. IEEE-ASME Transactions on Mechatronics, 2012, 17(4):646-656. [33]FONTANELLI G A, BUONOCORE L R, FICUCIELLO F, et al. A Novel Force Sensing Integrated into the Trocar for Minimally Invasive Robotic Surgery[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Vancouver, 2017:131-136. [34]ZEMITI N, MOREL G, ORTMAIER T, et al. Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2):143-153. [35]BANDARI N, DARGAHI J, PACKIRISAMY M. Miniaturized Optical Force Sensor for Minimally Invasive Surgery with Learning-based Nonlinear Calibration[J]. IEEE Sensors Journal, 2020, 20(7):3579-3592. [36]HASLINGER R, LEYENDECKER P, SEIBOLD U. A Fiberoptic Force-Torque-sensor for Minimally Invasive Robotic Surgery[C]∥ IEEE International Conference on Robotics and Automation. Karlsruhe, 2013:4390-4395. [37]HOSEOK S, HEECHUL K, JUWON J, et al. Development of FBG Sensor System for Force-feedback in Minimally Invasive Robotic Surgery[C]∥ 5th International Conference on Sensing Technology. Palmerston North, 2011:16-20. [38]LYU C, WANG S, SHI C. A High-precision and Miniature Fiber Bragg Grating-based Force Sensor for Tissue Palpation during Minimally Invasive Surgery[J]. Annals of Biomedical Engineering, 2019, 48(20):669-681. [39]姚斌, 张建勋, 代煜, 等. 用于微创外科手术机器人的多维力传感器解耦方法研究[J]. 仪器仪表学报, 2020, 41(1):147-153. YAO Bin, ZHANG Jianxun, DAI Yu, et al. Research on Decoupling Method of Multi-dimensional Force Sensor Used in Minimally Invasive Surgical Robot[J]. Chinese Journal of Scientific Instrument, 2020, 41(1):147-153. [40]TADA M, SASAKI S, OGASAWARA T. Development of an Optical 2-axis Force Sensor Usable in MRI Environments[C]∥ Proceedings of IEEE Sensors. Orlando, 2002:984-989. [41]PEIRS J, CLIJNEN J, REYNAERTS D, et al. A Micro Optical Force Sensor for Force Feedback during Minimally Invasive Robotic Surgery[J]. Sensors and Actuators A:Physical, 2004, 115(2):447-455. [42]MULLER M, HOFFMANN L, BUCK T, et al. Fiber Bragg Grating-based Force-Torque Sensor with Six Degrees of Freedom[J]. International Journal of Optomechatronics, 2009, 3(3):201-214. [43]POLYGERINOS P, SCHAEFFTER T, SENEVIRATNE L, et al. A Fibre-optic Catheter-tip Force Sensor with MRI Compatibility:a Feasibility Study[C]∥Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, 2009:1501-1504. [44]AHMADI R, ARBATANI S, PACKIRISAMY M, et al. Micro-optical Force Distribution Sensing Suitable for Lump/Artery Detection[J]. Biomedical Microdevices, 2015, 17:10. [45]XUE R F, REN B Y, HUANG J Q, et al. Design and Evaluation of FBG-based Tension Sensor in Laparoscope Surgical Robots[J]. Sensors, 2018, 18:2067. [46]ZARRIN P S, ESCOTO A, XU R, et al. Development of a 2-DOF Sensorized Surgical Grasper for Grasping and Axial Force Measurements[J]. IEEE Sensors Journal, 2018, 18(7):2816-2826. [47]LI T, SHI C, REN H. A High-sensitivity Tactile Sensor Array Based on Fiber Bragg Grating Sensing for Tissue Palpation in Minimally Invasive Surgery[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5):2306-2315. [48]SHI C, LI M, LYU C, et al. A High-sensitivity Fiber Bragg Grating-based Distal Force Sensor for Laparoscopic Surgery[J]. IEEE Sensors Journal, 2020, 20(5):2467-2475. [49]NOOHI E, PARASTEGARI S, EFRAN M. Using Monocular Images to Estimate Interaction Forces during Minimally Invasive Surgery[C]∥ 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014:4297-4302. [50]GESSERT N, BERINGHOFF J, OTTE C, et al. Force Estimation from OCT Volumes Using 3D CNNs[J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13(7):1073-1082. [51]ROSEN J, HANNAFORD B, MACFARLANE M P, et al. Force Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery-experimental Performance Evaluation[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(10):1212-1221. [52]SANG H, YUN J, MONFAREDI R, et al. External Force Estimation and Implementation in Robotically Assisted Minimally Invasive Surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(2):28466997. [53]THOLEY G, PILLARISETTI A, GREEN W, et al. Design, Development, and Testing of an Automated Laparoscopic Grasper with 3-D Force Measurement Capability[C]∥ International Symposium on Medical Simulation. Cambridge, 2004:38-48. [54]KENNEDY C W, DESAI J P. A Vision-based Approach for Estimating Contact Forces:Applications to Robot-assisted Surgery[J]. Applied Bionics and Biomechanics, 2005, 2(1):53-60. [55]YOON S M, LEE M, KIM C. Sliding Perturbation Observer Based Reaction Force Estimation Method of Surgical Robot Instrument for Haptic Realization[J]. International Journal of Humanoid Robotics, 2015, 12(2):1550013. [56]AVILES A I, ALSALEH S, SOBREVILLA P, et al. Sensorless Force Estimation Using a Neuro-vision-based Approach for Robotic-assisted Surgery[C]∥ 7th International IEEE/EMBS Conference on Neural Engineering(NER). Montpellier, 2015:86-89. [57]RAHMAN N, LEE M. Actual Reaction Force Separation Method of Surgical Tool by Fuzzy Logic Based SMCSPO[J]. International Journal of Control, Automation, and Systems, 2015, 13(2):379-389. [58]ZHAO B, NELSON C A. Estimating Tool-tissue Forces Using a 3-Degree-of-freedom Robotic Surgical Tool[J]. Journal of Mechanisms and Robotics, 2016, 8(5):051015. [59]LIN W, SONG K. Instrument Contact Force Estimation Using Endoscopic Image Sequence and 3D Reconstruction Model[C]∥ 2016 International Conference on Advanced Robotics and Intelligent Systems(ARIS). Taipei, 2016:16774744. [60]LI Y, HANNAFORD B. Gaussian Process Regression for Sensorless Grip Force Estimation of Cable-driven Elongated Surgical Instruments[J]. IEEE Robotics and Automation Letters, 2017, 2(3):1312-1319. [61]HWANG W, LIM S. Inferring Interaction Force from Visual Information without Using Physical Force Sensors[J]. Sensors, 2017, 17(11):2455. [62]WANG Z Y, WANG D M, CHEN B, et al. A Clamping Force Estimation Method Based on a Joint Torque Disturbance Observer Using PSO-BPNN for Cable-driven Surgical Robot End-effectors[J]. Sensors(Basel), 2019, 19(23):5291. [63]XUE R F, DU Z J, YAN Z Y, et al. An Estimation Method of Grasping Force for Laparoscope Surgical Robot Based on the Model of a Cable-pulley System[J]. Mechanism and Machine Theory, 2019, 134:440-454. |
[1] | 周丹砚, 黄汉雄, 罗杜宇. 双级微结构对柔性压力传感器性能的提升[J]. 中国机械工程, 2023, 34(06): 720-726. |
[2] | 盛天宇, 李健, 李鸿昌, 蒋永刚. 光纤法珀式SiC耐高温压力传感器的制造与测试[J]. 中国机械工程, 2022, 33(15): 1803-1809. |
[3] | 胡涞, 查俊, 朱永生, 位文明, 李东亚, 罗明, 牛文铁, 陈耀龙. 基础装备制造及高档集成数控机床研究进展[J]. 中国机械工程, 2021, 32(16): 1891-1903. |
[4] | 孙海;李晖;徐忠浩;贾辰强;刘远凝. 螺栓松动边界下纤维增强复合薄板固有特性分析[J]. 中国机械工程, 2020, 31(10): 1213-1218. |
[5] | 陈勇, 陈燚, 裴植, 王成. [数字孪生驱动的智能制造]基于文献计量的数字孪生研究进展分析[J]. 中国机械工程, 2020, 31(07): 797-807. |
[6] | 梁伟1,2;杨晓翔1,3;王秀荣2;姚进辉2. 球头副曲率半径对力传感器方位误差的影响[J]. 中国机械工程, 2019, 30(18): 2198-2206. |
[7] | 牛智1,2;赵铁石1,2;赵延治1,2;胡强强1,2;冀文杰1,2 . 正交并联六轴力传感器耦合误差测量模型及实验分析[J]. 中国机械工程, 2018, 29(24): 2972-2979,2987. |
[8] | 赵延治, 焦雷浩, 牛智, 鲁超, 赵铁石, . 机械解耦自标定并联六维力传感器设计及仿真[J]. 中国机械工程, 2017, 28(07): 771-778. |
[9] | 董小闵, 毛飞, 魏燕. 基于压阻原理的磁流变减振器阻尼力传感器设计[J]. 中国机械工程, 2016, 27(20): 2699-2704. |
[10] | 朱文超, 许德章. 混沌野草扩展Kalman滤波器辨识六维力传感器下E膜模型参数[J]. 中国机械工程, 2015, 26(7): 878-886. |
[11] | 孟丽君1, 谭跃刚1, 周祖德1, 梁宝逵2, 杨文玉3. 超声激励-光纤光栅检测技术的研究与发展[J]. 中国机械工程, 2013, 24(07): 980-988. |
[12] | 石延平, 臧勇, 周庆贵. 基于铁基纳米晶合金薄带的压磁式压力传感器的研究 [J]. 中国机械工程, 2012, 23(5): 547-551. |
[13] | 邢彤, 左强, 杨永帅, 阮健. 液压激振技术的研究进展 [J]. 中国机械工程, 2012, 23(3): 362-367,377. |
[14] | 吴强, 俞志伟, 吉爱红, 戴振东. 一种小型电阻应变式三维力传感器的仿真设计 [J]. 中国机械工程, 2011, 22(11): 1288-1293. |
[15] | 郑蓓蓉, 薛伟, 周晨, 张淼. 压力传感器集成恒流源灵敏度温度系数补偿 [J]. 中国机械工程, 2010, 21(7): 800-803. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||