[1]SURJADI J U, GAO L B, DU H F, et al. Mechanical Metamaterials and Their Engineering Applications[J]. Advanced Engineering Materials, 2019, 21(3):1800864.
[2]任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3):656-689.
REN Xin, ZHANG Xiangyu, XIE Yimin. Research Progress in Auxetic Materials and Structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3):656-689.
[3]TANCOGNE-DEJEAN T, DIAMANTOPOULOU M, GORJI M B, et al. 3D Plate-lattices:an Emerging Class of Low-density Metamaterial Exhibiting Optimal Isotropic Stiffness[J]. Advanced Materials, 2018, 30(45):1803334.
[4]王梁, 刘海涛. X型内凹蜂窝结构的拉伸力学行为研究[J]. 机械强度, 2020, 42(4):896-900.
WANG Liang, LIU Haitao. Study on Tensile Mechanical Behavior of X-Type Re-entrant Honeycomb Structure[J]. Journal of Mechanical Strength, 2020, 42(4):896-900.
[5]XU N, Liu H T. A Novel 3-D Structure with Tunable Poissons Ratio and Adjustable Thermal Expansion[J]. Composites Communications, 2020, 22:100431.
[6]WANG Y B, LIU H T, ZHANG Z Y. Rotation Spring:Rotation Symmetric Compression-torsion Conversion Structure with High Space Utilization[J]. Composite Structures, 2020, 245:112341.
[7]HUANG J, ZHANG Q H, SCARPA F, et al. In-plane Elasticity of a Novel Auxetic Honeycomb Design[J]. Composites Part B, 2017, 110:72-82.
[8]WU W W, HU W X, QIAN G A, et al. Mechanical Design and Multifunctional Applications of Chiral Mechanical Metamaterials:a Review[J]. Materials and Design, 2019, 180:107950.
[9]QI D X, YU H B, HU W X, et al. Bandap and Wave Aattenuation Mechanisms of Innovative Reentrant and Anti-chiral Hybrid Auxetic Metastructure[J]. Extreme Mechanics Letters, 2019, 28:58-68.
[10]WANG X T, WANG B, WEN Z H, et al. Fabrication and Mechanical Properties of CFRP Composite Three-dimensional Double-arrow-head Auxetic Structures[J]. Composites Science and Technology, 2018, 164:92-182.
[11]WANG X T, LI X W, MA L. Interlocking Assembled 3D Auxetic Cellular Structures[J]. Materials and Design, 2016, 99:467-476.
[12]THEOCARIS P S, STAVROULAKES G E, PANAGIOTOPOULOS P D. Negative Poissons Ratios in Composites with Star-shaped Inclusions:a Numerical Homogenization Approach[J]. Archive of Applied Mechanics, 1997, 67:274-286.
[13]FU M H, CHEN Y, HU L L. A Novel Auxetic Honeycomb with Enhanced In-plane Stiffness and Buckling Strength[J]. Composite Structures, 2017, 160:574-585.
[14]WANG Z P, POH L H, DIRRENBERGER J. Isogeometric Shape Optimization of Smoothed Petal Auxetic Structures via Computational Periodic Homogenization[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 323:50-271.
[15]AI L, GAO X L. Metamaterials with Negative Poissons Ratio and Non-positive Thermal Expansion[J]. Composite Structures, 2017, 162:70-84.
[16]AI L, GAO X L. Three-dimensional Metamaterials with a Negative Poissons Ratio and a Non-positive Coefficient of Thermal Expansion[J]. International Journal of Mechanical Sciences, 2018, 135:101-113.
[17]颜芳芳, 徐晓东. 负泊松比柔性蜂窝结构在变体机翼中的应用[J]. 中国机械工程, 2012, 23(5):542-546.
YAN Fangfang, XU Xiaodong. Negative Poissons Ratio Honeycomb Structure and Its Applications in Structure Design of Morphing Aircraft[J]. China Mechanical Engineering, 2012, 23(5):542-546.
[18]沈建邦, 肖俊华. 负泊松比可变弧角曲边内凹蜂窝结构的力学性能[J]. 中国机械工程, 2019, 30(17):2135-2141.
SHEN Jianbang, XIAO Junhua. Mechanics Properties of Negative Poissons Ratio Honeycomb Structures with Variable Arc Angle Curved Concave Sides[J]. China Mechanical Engineering, 2019, 30(17):2135-2141.
[19]蒋伟, 马华, 王军, 等. 基于环形蜂窝芯结构的负泊松比机械超材料[J]. 科学通报, 2016, 61:1421-1427, 2135-2141.
JIANG Wei, MA Hua, WANG Jun,et al. Mechanical Metamaterial with Negative Poissons Ratio Based on Circular Honeycomb Core[J]. China Science Bulletin, 2016, 61:1421-1427, 2135-2141.
[20]王彦斌, 刘海涛. 负泊松比圆弧曲线蜂窝芯结构的力学分析[J]. 云南大学学报(自然科学版), 2020, 42(6):1159-1165.
WANG Yanbin, LIU Haitao. Mechanical Analysis of the Circular Curve Honeycomb Core with Negative Poissons Ratio[J]. Journal of Yunnan University(Natural Sciences Edition), 2020, 42(6):1159-1165.
|