[1]NILSSON K, DOLCI F, SELDIS T, et al. Assessment of Thermal Fatigue Life for 316L and P91 Pipe Components at Elevated Temperatures[J]. Engineering Fracture Mechanics, 2016,168:73-91.
[2]俞树荣,夏洪波,李淑欣,等. 316L不锈钢扩散连接结构晶间腐蚀的研究[J].中国机械工程,2010,21(17):2138-2141.
YU Shurong, XIA Hongbo, LI Shuxin, et al. Intergranular Corrosion for Diffusion Bonded Joints of 316L Stainless Steel[J]. China Mechanical Engineering, 2010,21(17):2138-2141.
[3]NIKULIN I, SAWAGUCHI T, KUSHIBE A, et al. Effect of Strain Amplitude on the Low-cycle Fatigue Behavior of a New Fe-15Mn-10Cr-8Ni-4Si Seismic Damping Alloy[J]. International Journal of Fatigue,2016, 88:132-141.
[4]李聪,应诗浩,沈保罗,等.锆-4合金Masing特性的研究[J].核动力工程,2003, 24(3):219-222.
LI Cong, YING Shihao, SHEN Baoluo, et al. A Study of Masing Behavior in Zircaloy-4[J]. Nuclear Power Engineering, 2003, 24(3):219-222.
[5]ARORA P, GUPTA S K, BHASIN V, et al, Testing and Assessment of Fatigue Life Prediction Models for Indian PHWRs Piping Material under Multi-axial Load Cycling[J]. International Journal of Fatigue,2016,85:98-113.
[6]ROY S C, GOYAL S, SANDHYA R, et al. Low Cycle Fatigue Life Prediction of 316L(N) Stainless Steel Based on Cyclic Elasto-plastic Response[J]. Nuclear Engineering and Design, 2012, 253:219-225.
[7]GOYAL S, MANDAL S, PARAMESWARAN P, et al. A Comparative Assessment of Fatigue Deformation Behavior of 316 LN SS at Ambient and High Temperature[J]. Materials Science and Engineering:A, 2017, 696:407-415.
[8]ZHANG Y, HU CL, ZHAO Z, et al. Low Cycle Fatigue Behaviour of a Cr-Mo-V Matrix-type High-speed Steel Used for Cold Forging[J]. Materials & Design, 2013, 44:612-621.
[9]SIVAPRASAD S, SURAJIT K P, ARPAN D, et al. Cyclic Plastic Behaviour of Primary Heat Transport Piping Materials:Influence of Loading Schemes on Hysteresis Loop[J]. Materials Science and Engineering:A, 2010, 527(26):6858-6869.
[10]MUGHRABI H, CHRIST H J. Cyclic Deformation and Fatigue of Selected Ferritic and Austenitic Steels:Specific Spects[J]. ISIJ International, 1997, 37(12):1154-1169.
[11]谢里阳,任俊刚,吴宁祥,等,复杂结构部件概率疲劳寿命预测方法与模型[J].航空学报,2015, 36(8):2688-2695.
XIE Liyang, REN Jungang, WU Ningxiang, et al. Probabilistic Fatigue Life Prediction Method and Modeling for Complex Structural Parts[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2688-2695.
[12]付德龙, 张莉, 程靳. 基于塑性应变能的多轴低周疲劳寿命预测模型[J]. 工程力学, 2007, 24(3):54-57.
FU Delong, ZHANG Li, CHENG Jin. Multiaxial Low Cycle Fatigue Life Prediction Model Based on Plastic Energy[J]. Engineering Mechanics, 2007, 24(3):54-57.
[13]姚磊江, 童小燕, 吕胜利. 关于疲劳能量理论若干问题的讨论[J]. 机械强度, 2004, 26(增刊):278-281.
YAO Leijiang, TONG Xiaoyan, LYU Shengli. Discussion on Several Questions about the Fatigue Energy Theory[J]. Journal of Mechanical Strength, 2004, 26(S):278-281.
[14]CHEN C R, WANG Y, QU H G, et al.Energy-based Approach to Thermal Fatigue Life of Tool Steels for Die Casting Dies[J]. International Journal of Fatigue, 2016,92:166-178.
[15]WANG R Z, ZHANG X C, TU S D, et al.A Modified Strain Energy Density Exhaustion Model for Creep-fatigue Life Prediction[J]. International Journal of Fatigue, 2016,90:12-22.
[16]CARPINTERI A,BERTO F, CAMPAGNOLO A, et al. Fatigue Assessment of Notched Specimens by Means of a Critical Plane-based Criterion and Energy Concepts[J]. Theoretical and Applied Fracture Mechanics, 2016,84:57-63.
[17]郭强,郭杏林,樊俊铃,等.基于固有耗散的材料疲劳性能快速评估方法[J]. 力学学报,2014, 46(6):931-939.
GUO Qiang, GUO Xinglin, FAN Junling, et al. An Energy Approach to Rapidly Estimate Fatigue Behavior Based on Intrinsic Dissipation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6):931-939.
[18]ROY S C, GOYAL S, SANDHYA R. et al. Analysis of Hysteresis Loops of 316L(N) Stainless Steel under Low Cycle Fatigue Loading Conditions[J]. Procedia Engineering, 2013, 55:165-170.
[19]YU D, AN K, CHEN Y, et al. Revealing the Cyclic Hardening Mechanism of an Austenitic Stainless Steel by Real-time in Situ Neutron Diffraction[J]. Scripta Materialia, 2014, 89:45-48.
[20]COTTRELL A H. A Note on the Portevin-Le Chatelier Effect[J]. Philosophical Magazine, 1953, 44(355):829-832.
[21]KOH S K. Fatigue Damage Evaluation of a High Pressure Tube Steel Using Cyclic Strain Energy Density[J].International Journal of Pressure Vessels and Piping, 2002, 79:791-798.
[22]金丹,李江华,田大将,316L不锈钢单轴疲劳动态应变的时效分析[J].材料研究学报,2016, 30(7):496-501.
JIN Dan, LI Jianghua, TIAN Dajiang. Daynamics Strain Aging For 316L Stainless Steel during Uniaxial Fatigue Process[J]. Chinese Journal of Materials Research, 2016, 30(7):496-501.
[23]HONG S, LEE K, LEE S. Dynamic Strain Aging Effect on the Fatigue Resistance of Type 316L Stainless Steel[J]. International Journal of Fatigue, 2005, 27:1420-1424. |