中国机械工程 ›› 2025, Vol. 36 ›› Issue (07): 1520-1529.DOI: 10.3969/j.issn.1004-132X.2025.07.015

• 智能制造 • 上一篇    下一篇

基于生成模型的三维波束形成图像压缩方法

赵昀杰;贺岩松*;张志飞;徐中明   

  1. 重庆大学机械与运载工程学院,重庆,400044
  • 出版日期:2025-07-25 发布日期:2025-08-29
  • 作者简介:赵昀杰,男,1999年生,硕士研究生。研究方向为振动与噪声控制。发表论文1篇。E-mail:202207131152t@stu.cqu.edu.cn。
  • 基金资助:
    国家自然科学基金(11874096)

3D Beamforming Map Compression Method Based on Generative Model

ZHAO Yunjie;HE Yansong*;ZHANG Zhifei;XU Zhongming   

  1. College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing,400044
  • Online:2025-07-25 Published:2025-08-29

摘要: 针对通道压缩方法在高压缩率下导致DenseNet模型定位性能显著降低的问题,提出一种基于改进向量量化变分自编码器(VQ-VAE-2)模型的三维波束形成图像压缩 (3D-BFMC) 方法。先利用VQ-VAE-2模型的层级编码器将三维波束形成图压缩为向量化局部特征矩阵,再将该矩阵输入DenseNet模型实现三维定位。仿真结果表明,使用3D-BFMC方法压缩数据训练的DenseNet模型在定位精度、频率泛化性能、噪声鲁棒性上均优于通道压缩方法。单声源试验验证了3D-BFMC方法在真实环境中的有效性和可行性。

关键词: 波束形成, 数据压缩, 深度学习, 改进向量量化变分自编码器, 三维空间

Abstract:  To address the significant degradation in localization performance of DenseNet model under high compression ratios caused by channel compression method, a 3D beamforming map compression(3D-BFMC) method was proposed based on VQ-VAE-2 model. The hierarchical encoder of the VQ-VAE-2 model was used to compress 3D beamforming maps into vectorized local feature matrices, and then the matrices were input into the DenseNet model to perform 3D localization. Simulation results show that DenseNet models trained on compressed data by the 3D-BFMC method have better localization accuracy, frequency generalization and noise robustness than those of outperform channel compression approaches. A single-source experiment confirms the effectiveness and feasibility of 3D-BFMC in real-world environments.

Key words: beamforming, data compression, deep learning, vector quantized-variational autoencoder-2(VQ-VAE-2), three-dimensional space

中图分类号: