[1]HEIT J A, SPENCER F A, WHITE R H. The Epidemiology of Venous Thromboembolism[J]. Journal of Thrombosis and Thrombolysis, 2016, 41(1):3-14.
[2]HEIT J A. Epidemiology of Venous Thromboembolism[J]. Nature Reviews Cardiology, 2015, 12(8):464-474.
[3]VIRANI S S, ALONSO A, BENJAMIN E J, et al. Heart Disease and Stroke Statistics-2020 Update:a Report from the American Heart Association[J]. Circulation, 2020, 141(9):e139-e596.
[4]李立强, 佟铸, 崔世军, 等. Rotarex机械血栓清除系统治疗累及膝下腘动脉血栓栓塞病变的疗效观察[J]. 中国现代手术学杂志, 2023, 27(5):377-380.
LI Liqiang, TONG Zhu, CUI Shijun, et al. Efficacy of Rotarex Mechanical Thrombectomy System for Thromboembolic Lesions Involving Infraknee Popliteal Artery[J]. Chinese Journal of Modern Operative Surgery, 2023, 27(5):377-380.
[5]王海生, 彭喜涛, 梁冰, 等. Angiojet机械性血栓清除术联合导管接触性溶栓治疗急性下肢深静脉血栓形成患者的效果[J]. 中国民康医学, 2022, 34(5):16-18.
WANG Haisheng, PENG Xitao, LIANG Bing, et al. Effects of Angiojet Mechanical Thrombectomy Combined with Catheter-directed Thrombolysis in Patients with Acute Deep Venous Thrombosis of the Lower Extremities[J]. Medical Journal of Chinese Peoples Health, 2022, 34(5):16-18.
[6]王为华. 机械性血栓清除术对急性下肢深静脉血栓形成患者近远期治疗效果及临床预后的影响[J]. 中国实用医药, 2023, 18(10):41-45.
WANG Weihua. Effect of Mechanical Thrombectomy on the Short-and Long-term Treatment Effect and Clinical Prognosis of Patients with Acute Lower Extremity Deep Vein Thrombosis[J]. China Practical Medicine, 2023, 18(10):41-45.
[7]陈德才, 胡威龙, 王高尚. AngioJet机械血栓清除术对急性下肢深静脉血栓形成患者的应用效果[J]. 河南医学研究, 2024, 33(1):105-108.
CHEN Decai, HU Weilong, WANG Gaoshang. Effects of AngioJet Mechanical Thrombus Clearance in Patients with Acute Lower Limb Deep Venous Thrombosis[J]. Henan Medical Research, 2024, 33(1):105-108.
[8]SIMONTE G, FINO G, CASALI F, et al. Effectiveness of the Rotarex Excisional Atherectomy System in both Subacute and Chronic Aortoiliac Endograft Thrombosis:an Innovative Option for the Modern Endovascular Surgeon Toolkit[J]. Journal of Endovascular Therapy, 2023, 30(6):957-963.
[9]ZHUANG J M, LI T R, LI X, et al. Application of Rotarex Catheter System in Femoropopliteal Artery Stenosis Accompanied with Thrombosis[J]. Journal of Peking University(Health Sciences), 2023, 55(2):328-332.
[10]JOHNSON S, CHUEH J, GOUNIS M J, et al. Mechanical Behavior of in Vitro Blood Clots and the Implications for Acute Ischemic Stroke Treatment[J]. Journal of Neurointerventional Surgery, 2020, 12(9):853-857.
[11]BOODT N, SNOUCKAERT van SCHAUBURG P R W, HUND H M, et al. Mechanical Characterization of Thrombi Retrieved with Endovascular Thrombectomy in Patients with Acute Ischemic Stroke[J]. Stroke, 2021, 52(8):2510-2517.
[12]DUFFY S, FARRELL M, McARDLE K, et al. Novel Methodology to Replicate Clot Analogs with Diverse Composition in Acute Ischemic Stroke[J]. Journal of Neurointerventional Surgery, 2017, 9(5):486-491.
[13]LIU Ronghui, HE Hongping, ZHANG Luo, et al. In Vitro Models for the Experimental Evaluation of Mechanical Thrombectomy Devices in Acute Ischemic Stroke[J]. Interventional Neuroradiology, 2023, 29(6):759-767.
[14]LIU Ronghui, LYU Bin, MENG Haoye, et al. A Novel Method for Preparing Clot Analogs under Dynamic Vortical Flow for Testing Mechanical Thrombectomy Devices[J]. Interventional Neuroradiology, 2023:15910199231182850.
[15]FITZGERALD S T, LIU Y, DAI D, et al. Novel Human Acute Ischemic Stroke Blood Clot Analogs for in Vitro Thrombectomy Testing[J]. AJNR American Journal of Neuroradiology, 2021, 42(7):1250-1257.
[16]ZEMZEMI C, PHILLIPS M, VELA D C, et al. Effect of Thrombin and Incubation Time on Porcine Whole Blood Clot Elasticity and Recombinant Tissue Plasminogen Activator Susceptibility[J]. Ultrasound in Medicine & Biology, 2022, 48(8):1567-1578.
[17]HOLLAND C K, VAIDYA S S, DATTA S, et al. Ultrasound-enhanced Tissue Plasminogen Activator Thrombolysis in an in Vitro Porcine Clot Model[J]. Thrombosis Research, 2008, 121(5):663-673.
[18]JOHNSON S, McCARTHY R, GILVARRY M, et al. Investigating the Mechanical Behavior of Clot Analogues through Experimental and Computational Analysis[J]. Annals of Biomedical Engineering, 2021, 49(1):420-431.
[19]CHUEH J Y, WAKHLOO A K, HENDRICKS G H, et al. Mechanical Characterization of Thromboemboli in Acute Ischemic Stroke and Laboratory Embolus Analogs[J]. AJNR American Journal of Neuroradiology, 2011, 32(7):1237-1244.
[20]MALONE F, McCARTHY E, DELASSUS P, et al. The Mechanical Characterisation of Bovine Embolus Analogues under Various Loading Conditions[J]. Cardiovascular Engineering and Technology, 2018, 9(3):489-502.
[21]WEAFER F M, DUFFY S, MACHADO I, et al. Characterization of Strut Indentation during Mechanical Thrombectomy in Acute Ischemic Stroke Clot Analogs[J]. Journal of Neurointerventional Surgery, 2019, 11(9):891-897.
[22]MICHAEL C, PANCALDI F, BRITTON S, et al. Combined Computational Modeling and Experimental Study of the Biomechanical Mechanisms of Platelet-driven Contraction of Fibrin Clots[J]. Communications Biology, 2023, 6(1):869.
[23]TUTWILER V, SINGH J, LITVINOV R I, et al. Rupture of Blood Clots:Mechanics and Pathophysiology[J]. Science Advances, 2020, 6(35):eabc0496.
[24]RAMANUJAM R K, GARYFALLOGIANNIS K, LITVINOV R I, et al. Mechanics and Microstructure of Blood Plasma Clots in Shear Driven Rupture[J]. Soft Matter, 2024, 20(21):4184-4196.
[25]CHEN Zhihua, ZHANG Yue, WANG Chengyong, et al. Understanding the Cutting Mechanisms of Composite Structured Soft Tissues[J]. International Journal of Machine Tools and Manufacture, 2021, 161:103685.
[26]ENOMOTO T, MAO Xin, SATAKE U. Cutting Performance by Surgical Scissors of Tubular Soft Tissues such as Blood Vessels[J]. CIRP Annals, 2021, 70(1):69-72.
[27]EYISOYLU H, HAZEKAMP E D, CRUTS J, et al. Flow Affects the Structural and Mechanical Properties of the Fibrin Network in Plasma Clots[J]. Journal of Materials Science Materials in Medicine, 2024, 35(1):8.
[28]沈斌. 血栓去除组件及血栓去除装置:CN216148137U
[P]. 2022-04-01.
SHEN BIN. Thrombectomy Components and Devices:CN216148137U[P]. 2022-04-01.
[29]SALDVAR E, ORJE J N, RUGGERI Z M. Tensile Destruction Test as an Estimation of Partial Proteolysis in Fibrin Clots[J]. American Journal of Hematology, 2002, 71(2):119-127.
[30]GU X L, ZHANG X Y, QIU X J, et al. The Hemolysis Effect of Rotary Cutting Thrombectomy Device:the CFD and Experimental Study[C]∥2021 Design of Medical Devices Conference. Minneapolis, 2021:DMD2021-1007.
[31]GHEZELBASH F, LIU Shiyu, SHIRAZI-ADL A, et al. Blood Clot Behaves as a Poro-visco-elastic Material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 128:105101.
[32]HE Dongjing, KIM D A, KU D N, et al. Viscoporoelasticity of Coagulation Blood Clots[J]. Extreme Mechanics Letters, 2022, 56:101859.
[33]TASHIRO K, SHOBAYASHI Y, HOTTA A. Numerical Simulation of Non-linear Loading–Unloading Hysteresis Behavior of Blood Clots[J]. Biocybernetics and Biomedical Engineering, 2022, 42(4):1205-1217.
[34]CHANDRASHEKAR A, SINGH G, GARRY J, et al. Mechanical and Biochemical Role of Fibrin within a Venous Thrombus[J]. European Journal of Vascular and Endovascular Surgery, 2018, 55(3):417-424.
[35]TUTWILER V, MAKSUDOV F, LITVINOV R I, et al. Strength and Deformability of Fibrin Clots:Biomechanics, Thermodynamics, and Mechanisms of Rupture[J]. Acta Biomaterialia, 2021, 131:355-369.
[36]FEREIDOONNEZHAD B, DWIVEDI A, JOHNSON S, et al. Blood Clot Fracture Properties Are Dependent on Red Blood Cell and Fibrin Content[J]. Acta Biomaterialia, 2021, 127:213-228.
|