J4 ›› 2008, Vol. 19 ›› Issue (13): 0-1637.

• 制造系统 •    

基于隶属度模糊最小二乘支持向量机的工序能力预测

孙林1;杨世元1;吴德会2, 3   

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-07-10 发布日期:2008-07-10

Intelligent Prediction for Process Capability Based on FLS-SVM

Sun Lin1;Yang Shiyuan1;Wu Dehui2,3   

  • Received:1900-01-01 Revised:1900-01-01 Online:2008-07-10 Published:2008-07-10

摘要:

提出了一种基于隶属度模糊最小二乘支持向量机(FLS-SVM)的时间序列预测新方法。一方面,该方法较好地解决了小样本学习问题,避免了人工神经网等智能方法在对小批量生产工序能力进行预测时所表现出来的过学习、泛化能力弱等缺点;另一方面,由于对于历史数据实行的重近轻远的原则,使得该方法预测精度高且容易实现。实验表明,该方法具有很好的有效性与实用性。

关键词: 工序能力;最小二乘支持向量机;时间序列;智能预测

Abstract:

A new time series prediction method was put forward,based on fuzzy least square support vector machine (FLS-SVM). On the one hand, it can solve the small-batch learning better and avoid the disadvantages, such as over-training, weak normalization capability, ect., of artificial neural networks prediction. On the other hand, this proposed method is more accurate and can be realized easily because it sets larger weight on the nearer sample but smaller weight on the farther. As a result, the prediction effect shows the effectiveness and practicability of the mode. 

Key words: process capability, least square support vector machine, time series, intelligent prediction

中图分类号: