中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 22-29.DOI: 10.3969/j.issn.1004-132X.2026.01.003
收稿日期:2025-05-14
出版日期:2026-01-25
发布日期:2026-02-05
通讯作者:
王悦昶
作者简介:张梓洋,男,2000年生,硕士研究生。研究方向为摩擦化学。Email: 23S153078@stu.hit.edu.cn基金资助:
ZHANG Ziyang(
), GONG Yajing, WANG Yuechang(
)
Received:2025-05-14
Online:2026-01-25
Published:2026-02-05
Contact:
WANG Yuechang
摘要:
提出一种混合润滑共形接触表面摩擦学特性演变加速试验设计方法。该方法基于“降黏加速”思想,保持粗糙峰接触状态不变,仅通过增加粗糙峰相互作用频率实现摩擦学性能的加速演化。在Plint TE-92摩擦磨损试验机上对所提加速试验设计方法进行了验证。实验显示常速工况(速度0.2 m/s,温度25 ℃, 试验时长20 min )与加速后工况(速度0.4 m/s, 温度47 ℃, 试验时长10 min)的摩擦因数、三维形貌参数Sq与Ssk吻合较好,这表明加速试验10 min与未加速试验20 min的磨损效果相同。
中图分类号:
张梓洋, 龚雅婧, 王悦昶. 混合润滑共形接触表面摩擦学特性演变的加速试验方法[J]. 中国机械工程, 2026, 37(1): 22-29.
ZHANG Ziyang, GONG Yajing, WANG Yuechang. Method for Accelerated Tribological Property Evolution Experiments of Conformal Contact Surfaces in Mixed Lubrication Regime[J]. China Mechanical Engineering, 2026, 37(1): 22-29.
| 材料 | 弹性模量/GPa | 泊松比 | 硬度 | 密度/( |
|---|---|---|---|---|
| WC-Ni | 550 | 0.22 | 1500 HV | 15 |
| GCr15 | 208 | 0.3 | 215 HV | 7.8 |
表1 配副材料性能参数
Tab.1 The performance parameters of matching materials
| 材料 | 弹性模量/GPa | 泊松比 | 硬度 | 密度/( |
|---|---|---|---|---|
| WC-Ni | 550 | 0.22 | 1500 HV | 15 |
| GCr15 | 208 | 0.3 | 215 HV | 7.8 |
| Sq/ | Ssk | Sku | Sal/ | Str | |
|---|---|---|---|---|---|
| GCr15 | 0.493±0.0088 | 4.56±0.1122 | 7.451±0.1999 | 0.94±0.0451 | |
| WC-Ni | 0.215±0.0048 | 4.10±0.1087 | 6.098±0.1126 | 0.93±0.0385 |
表2 GCr15和WC-Ni实验件表面形貌参数
Tab.2 The surface morphology parameters of GCr15 and WC-Ni experiment parts
| Sq/ | Ssk | Sku | Sal/ | Str | |
|---|---|---|---|---|---|
| GCr15 | 0.493±0.0088 | 4.56±0.1122 | 7.451±0.1999 | 0.94±0.0451 | |
| WC-Ni | 0.215±0.0048 | 4.10±0.1087 | 6.098±0.1126 | 0.93±0.0385 |
| 接触面积比α | 承载比β | 摩擦因数μ | |
|---|---|---|---|
60 N高斯面 常速工况 | 0.007 14±0.001 74 | 0.324 97±0.097 23 | 0.059 71±0.012 51 |
60 N高斯面 加速工况 | 0.007 52±0.0015 | 0.325 51±0.097 68 | 0.059 11±0.012 82 |
50 N非高斯面 常速工况 | 0.019 009±0.004 029 | 0.439 427±0.082 906 | 0.078 246±0.009 676 |
50 N非高斯面 加速工况 | 0.018 91±0.003 994 | 0.443 031±0.084 85 | 0.078 721±0.009 88 |
表3 不同工况下加速试验与未加速试验的仿真结果
Tab.3 The simulation results of accelerated experiments and normal experiments in different operating conditions
| 接触面积比α | 承载比β | 摩擦因数μ | |
|---|---|---|---|
60 N高斯面 常速工况 | 0.007 14±0.001 74 | 0.324 97±0.097 23 | 0.059 71±0.012 51 |
60 N高斯面 加速工况 | 0.007 52±0.0015 | 0.325 51±0.097 68 | 0.059 11±0.012 82 |
50 N非高斯面 常速工况 | 0.019 009±0.004 029 | 0.439 427±0.082 906 | 0.078 246±0.009 676 |
50 N非高斯面 加速工况 | 0.018 91±0.003 994 | 0.443 031±0.084 85 | 0.078 721±0.009 88 |
| 工况 | Sq/μm | Ssk | Sku |
|---|---|---|---|
实验组1 加速工况 | 0.083 67±0.01382 | 116.51± 69.920 18 | |
实验组1 常速工况 | 0.072± 0.011 43 | 1.727 25 | 218.513 33± 87.034 91 |
实验组2 加速工况 | 0.063 67± 0.008 65 | 0.830 03 | 137.213 33± 28.471 58 |
实验组2 常速工况 | 0.083± 0.008 52 | 0.396 74 | 84.78± 30.516 05 |
表4 加速试验与未加速试验的表面形貌参数
Tab.4 The surface morphology parameters of accelerated experiments and normal experiments
| 工况 | Sq/μm | Ssk | Sku |
|---|---|---|---|
实验组1 加速工况 | 0.083 67±0.01382 | 116.51± 69.920 18 | |
实验组1 常速工况 | 0.072± 0.011 43 | 1.727 25 | 218.513 33± 87.034 91 |
实验组2 加速工况 | 0.063 67± 0.008 65 | 0.830 03 | 137.213 33± 28.471 58 |
实验组2 常速工况 | 0.083± 0.008 52 | 0.396 74 | 84.78± 30.516 05 |
| [1] | SONG Yifan, YAN Pei, JIAO Li, et al. Numerical Simulation of the Effect of Surface Microgeometry and Residual Stress on Conformal Contact Fretting Fatigue Crack Initiation Behavior[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(8): 2798-2815. |
| [2] | YANG Zhefu, HONG Jie, WANG Dong, et al. Vibration Analysis of Rotor Systems with Bearing Clearance Using a Novel Conformal Contact Model[J]. Nonlinear Dynamics, 2024, 112(10): 7951-7976.[LinkOut] |
| [3] | 朱佩元. 圆柱直齿轮沟槽微织构摩擦性能研究[D]. 厦门: 厦门理工学院, 2021. |
| Zhu Peiyuan. Research on Friction Performance of Cylindrical Spur Gear with Grooved Micro-texture[D]. Xiamen: Xiamen University of Technology, 2021. | |
| [4] | LI Hongju, LIU Ying, LIAO Haoran, et al. Accelerated Wear Test Design Based on Dissipation Wear Model Entropy Analysis under Mixed Lubrication[J]. Lubricants, 2022, 10(4): 71. |
| [5] | SPRINGIS G, BOIKO I. Comparative Analysis of Wear Models for Accurate Wear Predictions[J]. Lubricants, 2025, 13(3): 100. |
| [6] | GU Congcong, LIU Songyong, CHEN Haibin, et al. Design of Disc Cutter Wear Test System and Research on Wear Law Based on Eddy Current Testing Technology[J]. Rock Mechanics and Rock Engineering, 2025, 58(2): 2071-2088. |
| [7] | SHIVARAMU H T, VIGNESH NAYAK U, K S U. Wear Debris Analysis of Al-Si/MWCNT Nanocomposite during Dry Sliding Wear Tests[J]. Engineering Research Express, 2024, 6(2): 025546. |
| [8] | GORYACHEVA I G, STEPANOV F I, TORSKAYA E V. Fatigue Wear Modeling of Elastomers[J]. Physical Mesomechanics, 2019, 22(1): 65-72. |
| [9] | ZHANG Haibo, GOLTSBERG R, ETSION I. Modeling Adhesive Wear in Asperity and Rough Surface Contacts: a Review[J]. Materials, 2022, 15(19): 6855.[LinkOut] |
| [10] | 朱科浩. 纳米晶体锆摩擦行为的分子动力学模拟[D]. 成都: 西南交通大学, 2020. |
| ZHU Kehao. Molecular Dynamics Simulations of Friction Behaviors of Nanocrystalline Zirconium[D]. Chengdu: Southwest Jiaotong University, 2020. | |
| [11] | PATURI U M R, PALAKURTHY S T, REDDY N S. The Role of Machine Learning in Tribology: a Systematic Review[J]. Archives of Computational Methods in Engineering, 2023, 30(2): 1345-1397. |
| [12] | TREMMEL S, MARIAN M. Machine Learning in Tribology—More than Buzzwords?[J]. Lubricants, 2022, 10(4): 68. |
| [13] | CHENG Minghui, JIAO Li, YAN Pei, et al. Intelligent Tool Wear Monitoring and Multi-step Prediction Based on Deep Learning Model[J]. Journal of Manufacturing Systems, 2022, 62: 286-300. |
| [14] | 李鸿举, 刘莹, 廖浩然,等. 基于耗散磨损模型的典型机械密封配副混合润滑磨损加速试验研究[J]. 摩擦学学报, 2023, 43(3): 293-302. |
| LI Hongju, LIU Ying, LIAO Haoran, et al. Accelerate Wear Test under Mixed Lubrication Condition Based on Dissipation Wear Model for Typical Mechanical Seal Pair[J]. Tribology, 2023, 43(3): 293-302. | |
| [15] | ZHOU Zhenyu, JIANG Zhiguo, ZHENG Qiuyang, et al. Research on the Construction of Gradient Nanostructure and Anti-tribocorrosion Behavior of Aluminum Alloy Surface[J]. Tribology International, 2024, 194: 109448. |
| [16] | ZHOU Zhenyu, ZHENG Qiuyang, LI Yu, et al. Research on the Mechanism of the Two-dimensional Ultrasonic Surface Burnishing Process to Enhance the Wear Resistance for Aluminum Alloy[J]. Friction, 2024, 12(3): 490-509. |
| [17] | BOUGOFFA M S E, BENCHAA S, BENKRIMA Y, et al. An Innovative Evaluation of the Friction and Wear Behavior of Ferrous and Non-ferrous Metals under Lab and Lathe Wear Tests[J]. Journal of the Institution of Engineers (India): Series D, 2024: s40033-024-00820-7. |
| [18] | MIAO Junwei, LIANG Hui, ZHANG Aijun, et al. Tribological Behavior of an AlCoCrFeNi2.1 Eutectic High Entropy Alloy Sliding Against Different Counterfaces[J]. Tribology International, 2021, 153: 106599. |
| [19] | CUI Xiaohan, JIANG Pengfei, NIE Minghao, et al. Microstructure and Wear Behavior of Laser Cladding FeCoCrNiMo Coating with Gradient Transition Entropy Interlayer[J]. Tribology International, 2024, 198: 109913. |
| [20] | 郭谨铭. 面向高纯8Cr4Mo4V的航空轴承寿命修正及加速试验方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.GuoJinming. Research on Life Modification and Accelerated Test Method of Aviation Bearing for High Purity 8Cr4Mo4V[D]. Harbin: Harbin Institute of Technology, 2021. |
| [21] | 袁凯, 刘杰, 胡靖涵, 等. 可靠性加速试验技术研究[J]. 自动化仪表, 2024, 45(5): 19-24. |
| YUAN Kai, LIU Jie, HU Jinghan, et al. Research on Reliability Accelerated Test Technique[J]. Process Automation Instrumentation, 2024, 45(5): 19-24. | |
| [22] | CHEN Wenhua, GAO Liang, PAN Jun, et al. Design of Accelerated Life Test Plans—Overview and Prospect[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 13. |
| [23] | WANG Yashun, FANG Xin, ZHANG Chunhua, et al. Lifetime Prediction of Self-lubricating Spherical Plain Bearings Based on Physics-of-failure Model and Accelerated Degradation Test[J]. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2016, 18(4): 528-538. |
| [24] | YU Rui, HE Bin, QIAN Shusheng. Prediction of Gear Degradation Trend under Failure Modes Based on Accelerated Life Test[J]. Engineering Failure Analysis, 2025, 170: 109290. |
| [25] | LI Junyang, WANG Jiaxu, ZHOU Guangwu, et al. Accelerated Life Testing of Harmonic Driver in Space Lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229(12): 1491-1502. |
| [26] | JEON Hong-Gyu, YOO Jae-Hyeong, LEE Young-Ze. Design of Accelerated Life Test for Sleeve Bearing of Construction Equipment Based on Wear Prediction[J]. Tribology Transactions, 2019, 62(3): 419-427. |
| [27] | WANG Yuechang, AZAM A, ZHANG Gaolong, et al. Understanding the Mechanism of Load-carrying Capacity between Parallel Rough Surfaces through a Deterministic Mixed Lubrication Model[J]. Lubricants, 2022, 10(1): 12. |
| [28] | WANG Yuechang, LIU Ying, ZHANG Gaolong, et al. A Simulation Method for Non-Gaussian Rough Surfaces Using Fast Fourier Transform and Translation Process Theory[J]. Journal of Tribology, 2018, 140(2): 021403. |
| [1] | 余植敏, 陈磊, 范雪. 温度电场耦合下纳米结构碳膜的摩擦学特性及机理[J]. 中国机械工程, 2026, 37(1): 30-39. |
| [2] | 钱萍, 陈驰, 陈文华, 吴山奇, 郭明达. 电连接器用聚氨酯胶密封件贮存可靠性统计模型的加速试验验证与评估[J]. 中国机械工程, 2024, 35(05): 886-894. |
| [3] | 沈永峰1, 3, 郑松林1, 王治瑞1, 马扎根2, 胡文伟2. 某型轿车摆臂程序载荷谱编制研究[J]. 中国机械工程, 2013, 24(14): 1974-1978. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||