[1]韩存仓, 林士兰. 硬齿轮屈服强度与疲劳裂纹源的判定[J]. 中国机械工程, 2011, 22(13):1620-1623.
HAN Cuncang, LIN Shilan. Decision of Yielding Strength and Fatigue Crack Source of Hard Gears[J]. China Mechanical Engineering, 2018, 37(11):115-123.
[2]JALALAHMADI B, SADEGHI F, BAKOLAS V. Material Inclusion Factors for Lundberg-Palmgren-based RCF Life Equations[J]. Tribology Transactions, 2011, 54(3):457-469.
[3]GUPTA A, GOYAL S, PADMANABHAN K A, et al. Inclusions in Steel:Micro-macro Modelling Approach to Analyse the Effects of Inclusions on the Properties of Steel[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(1/4):565-572.
[4]冯磊, 轩福贞. 非金属夹杂物对材料内局部应力集中的影响[J]. 机械工程学报, 2013, 49(8):41-48.
FENG Lei, XUAN Fuzhen. Effect of Non-metallic Inclusions on the Local Stress Concentration within Materials[J]. Journal of Mechanical Engineering, 2013, 49(8):41-48.
[5]MOGHADDAM S M, SADEGHI F, WEINZAPFEL N, et al. A Damage Mechanics Approach to Simulate Butterfly Wing Formation around Nonmetallic Inclusions[J]. Journal of Tribology:Transactions of the ASME, 2015, 137(1):011404.
[6]WANG W, LIU H J, ZHU C C, et al. Effect of the Residual Stress on Contact Fatigue of a Wind Turbine Carburized Gear with Multiaxial Fatigue Criteria[J]. International Journal of Mechanical Sciences, 2018, 151:263-273.
[7]WANG W, LIU H J, ZHU C C, et al. Micromechanical Analysis of Gear Fatigue-ratcheting Damage Considering the Phase State and Inclusion[J]. Tribology International, 2019, 136:182-195.
[8]WEI P T, ZHOU H, LIU H J, et al. Modeling of Contact Fatigue Damage Behavior of a Wind Turbine Carburized Gear Considering Its Mechanical Properties and Microstructure Gradients[J]. International Journal of Mechanical Sciences, 2019, 156:283-296.
[9]ZHOU H, WEI P, LIU H, et al. Roles of Microstructure, Inclusion, and Surface Roughness on Rolling Contact Fatigue of a Wind Turbine Gear[J]. Fatigue & Fracture of Engineering Materials & Structures. 2020; 43:1368-1383.
[10]张文博, 刘怀举, 朱才朝, 等. 夹杂物对齿轮接触疲劳性能影响的仿真分析[J]. 机械传动, 2020, 44(11):14-20.
ZHANG Wenbo, LIU Huaiju, ZHU Caichao, et al. Simulation Analysis of the Influence of Inclusion on Contact Fatigue Performance of Gear[J]. Journal of Mechanical Transmission, 2020, 44(11):14-20.
[11]ZHANG J, YANG C, ZHANG L. Mesoscopic Dynamic Characteristics and RCF Damage Evolution of High-speed Transmission Gear in Wind Turbine[J]. International Journal of Fatigue, 2023, 168:107427.
[12]YUAN Z B, LI Q. A Configurational Force Based Anisotropic Damage Model for Original Isotropic Materials[J]. Engineering Fracture Mechanics, 2019, 215:49-64.
[13]LIU R, SUN D, HOU J, et al. Fatigue Life Ana-lysis of Wind Turbine Gear with Oxide Inclusion[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 44(3):776-787.
[14]WANG R, YUAN Z B, LI Q, et al. Damage Evolution of Biodegradable Magnesium Alloy Stent Based on Configurational Forces[J]. Journal of Biomechanics, 2021, 122:110443.
[15]张延杰, 吴训成, 张珏成. 基于载荷谱的斜齿轮副疲劳性能研究[J]. 机械强度, 2017, 39(3):712-718.
ZHANG Yanjie, WU Xuncheng, ZHANG Jue-cheng. Research on the Fatigue Performance of Helical Gear Pair Based on Load Spectrum[J]. Journal of Mechanical Strength, 2017, 39(3):712-718.
|