中国机械工程 ›› 2024, Vol. 35 ›› Issue (10): 1711-1721.DOI: 10.3969/j.issn.1004-132X.2024.10.001
朱才朝1;张荣华1;宋朝省1;谭建军1;杨亮2
出版日期:
2024-10-25
发布日期:
2024-11-12
作者简介:
朱才朝,男,1966年生,教授、博士研究生导师。研究方向为风电装备系统动力学和智能控制。E-mail:cczhu@cqu.edu.cn。
基金资助:
ZHU Caichao1;ZHANG Ronghua1;SONG Chaoshen1;TAN Jianjun1;YANG Liang2
Online:
2024-10-25
Published:
2024-11-12
摘要: 风电机组大型化步伐加快,核心零部件的可靠性对风机运行的影响越来越大。滑动轴承具有高承载、长寿命、易维护、可扩展、小体积等优点,对风机主轴承关键零部件的国产安全可靠替代水平提高具有显著作用和很大潜力。分析了大功率风机主轴滚动轴承存在的问题与主轴应用滑动轴承的优势,并详细论述了风机主轴滑动轴承设计、材料、润滑、试验验证等多方面的技术方法和应用现状,总结了大功率风机主轴滑动轴承存在的问题及未来的发展趋势,为大功率风电主轴承数字化设计与产业发展提供参考。
中图分类号:
朱才朝1, 张荣华1, 宋朝省1, 谭建军1, 杨亮2. 大功率风机主轴滑动轴承研究现状及发展趋势[J]. 中国机械工程, 2024, 35(10): 1711-1721.
ZHU Caichao1, ZHANG Ronghua1, SONG Chaoshen1, TAN Jianjun1, YANG Liang2. Research Status and Development Trends of Large Wind Turbine Main Shaft Sliding Bearings[J]. China Mechanical Engineering, 2024, 35(10): 1711-1721.
[1]European Parliament. Amendments Adopted by the European Parliament on the Renewable Energy Directive[EB/OL].[2024-01-9]. https:∥www.europarl.europa.eu/doceo/document/TA-9-2022-0317_EN.html. [2]German Bundestag. Gesetz für den Ausbau Erneuerbarer Energien(Erneuerbare Energien-Gesetz—EEG 2023)[EB/OL].[2024-01-9]. https:∥www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html. [3]周剑平,李世民.光伏、风力发电助推甘肃省经济发展和实现“双碳”目标[J].太阳能,2022(4):13-19. ZHOU Jianping, LI Shimin. Photovoltaics and Wind Power Promote Economic Development and Achieve the “Dual Carbon” Goal in Gansu Province[J]. Solar Energy, 2022(4):13-19. [4]孙荣富,徐海翔,吴林林,等.中国区域低温天气及其对风力发电影响的统计[J].全球能源互联网,2022,5(1):2-10. SUN Rongfu, XU Haixiang, WU Linlin, et al. Statistics on Regional Low Temperature Weather in China and Its Impact on Wind Power Generation[J]. Global Energy Internet, 2022, 5(1):2-10. [5]朱才朝,周少华,张亚宾,等.滑动轴承在风电齿轮箱中的应用现状与发展趋势[J].风能,2021(9):38-42. ZHU Caichao, ZHOU Shaohua, ZHANG Yabin, et al. The Application Status and Development Trends of Sliding Bearings in Wind Power Gearboxes[J]. Wind Energy, 2021(9):38-42. [6]曲楠楠.中国风电轴承发展现状及展望[J].哈尔滨轴承,2022,43(3):39-43. QU Nannan. Development Status and Prospects of Wind Power Bearings in China[J]. Harbin Bearing, 2022, 43(3):39-43 [7]Windeurope. Offshore Wind in Europe Key Trends and Statistics[EB/OL]. [2024-01-09]. https:∥windeurope.org/about-wind/statistics/offshore/european-offshore-wind-industry-key-trends-statistics-2019/. [8]Windeurope. Wind Energy in Europe Trends and Statistics[EB/OL].[2024-01-09]. https:∥windeurope.org/wp-content/ uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2019. [9]Fraunhofer. Turbine Size[EB/OL].[2024-01-09].https:∥windmonitor.iee.fraunhofer.de/windmonitor_en/3_Onshore/2_technik/4_ anlagengroesse. [10]WISER R, BOLINGER M, HOEN B, et al. 2018 Wind Technologies Market Report[EB/OL].[2024-01-09]. https:∥www.semanticscholar.org/paper/Land-Based-Wind-Market-Report% 3A-2021- Edition-Wiser-Bolinger/4d661558cd9d1c7fb46562966 2f5498af02888a4. [11]COSTANZO G, BINDLEY G, COLE P. Wind Energy in Europe:2022 Statistics and the Outlook for 2023-2027[EB/OL].[2024-01-09]. https:∥windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027. [12]NEJAD A R, KELLER J, GUO Y, et al. Wind Turbine Drivetrains:State-of-the-art Technologies and Future Development Trends[J]. In Wind Energy Science, 2022,7(1):387-411. [13]LIU Z, ZHANG L. A Review of Failure Modes, Condition Monitoring and Fault Diagnosis Methods for Large-scale Wind Turbine Bearings[J]. Measurement, 2020, 149:107002. [14]TORSVIK J, NEJAD R A, PEDERSEN E. Main Bearings in Large Offshore Wind Turbines:Development Trends, Design and Analysis Requirements[J]. Journal of Physics:Conference Series,2018,1037(4):042020. [15]EDWARD H, TURNBULL A, FEUCHTWANG J, et al. Wind Turbine Main-bearing Loading and Wind Field Characteristics[J]. Wind Energy, 2019,22(11):1534-1547. [16]李萌.双馈型风电机组主轴轴承选型设计方法的研究[D]. 北京:华北电力大学,2018. LI Meng. Research on the Selection and Design Method of Main Shaft Bearings for Doubly Fed Wind Turbines[D]. Beijing:North China Electric Power University, 2018. [17]WALGERN J, PETERS L, MADLENER R. Economic Evaluation of Maintenance Strategies for Offshore Wind Turbines Based on Condition Monitoring Systems[EB/OL].[2024-01-09]. https:∥www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabbjfly. [18]STEFFEN B, BEUSE M, TAUTORAT P, et al. Experience Curves for Operations and Maintenance Costs of Renewable Energy Technologies[J]. Joule, 2020, 4:359-375. [19]MCGOWAN E. Giant, Turbine-installing Ship is Dominion Energys $500M Bet on U.S. Offshore Wind[EB/OL].[2024-01-09]. https:∥energynews.us/2022/03/08/giant-turbine-installing-ship-is-dominion-energys-500m-bet-on-u-s-offshore-wind/. [20]周恒宇,周建星,温建民,等.风电轴承失效模式研究进展[J].轴承,2023(6):102-114. ZHOU Hengyu, ZHOU Jianxing, WEN Jianmin, et al. Research Progress on Failure Modes of Wind Turbine Bearings[J]. Bearing, 2023(6):102-114. [21]Windtech-international.New Research Shows 20MW Wind Turbines are Feasible[EB/OL].[2024-01-09]. https:∥www.windtech-international.com/industry-news/new-research-shows-20mw-wind-turbines-are-feasible. [22]陈奇,张凯,朱杰,等.风电滑动轴承设计与性能检测技术发展现状[J].轴承,2023(6):14-19. CHEN Qi, ZHANG Kai, ZHU Jie, et al. Development Status of Wind Power Sliding Bearing Design and Performance Testing Technology[J]. Bearing, 2023(6):14-19. [23]沈德昌. 当前风电设备技术发展现状及前景[J]. 太阳能学报, 2018(4):13-18. SHEN Dechang. The Current Development Status and Prospects of Wind Power Equipment Technology[J]. Journal of Solar Energy, 2018(4):13-18. [24]HART E, CLARKE B, NICHOLAS G, et al. A Review of Wind Turbine Main Bearings:Design, Operation, Modelling, Damage Mechanisms and Fault Detection[J]. Wind Energy Science, 2020,5(1):105-124. [25]SCHRDER T, JACOBS G, ROLINK A, et al. “FlexPad” -innovative Conical Sliding Bearing for the Main Shaft of Wind Turbines[J]. Journal of Physics Conference Series, 2019, 1222(1):012026. [26]EULER J, JACOBS G, AMIN L, et al. Scaling Challenges for Conical Plain Bearings as Wind Turbine Main Bearings[J]. Wind, 2023, 3(4):485-495. [27]SITAE K, DONGIL S, PALAZZOLO A B. A Review of Journal Bearing Induced Nonlinear Rotor Dynamic Vibrations[J]. Journal of Tribology, 2021,143(11):111802. [28]俞黎萍,石亦平,刘瑞峰.风机主轴承的选型与设计分析[J]. 重庆大学学报,2015,38(1):80-86. YU Liping, SHI Yiping, LIU Ruifeng. Selection and Design Analysis of Wind Turbine Main Bearings[J]. Journal of Chongqing University, 2015, 38(1):80-86. [29]MICHALEC M, SVOBODA P, KˇRUPKA I, et al. A Review of the Design and Optimization of Large-scale Hydrostatic Bearing Systems[J]. Engineering Science and Technology, an International Journal, 2021;24(4):936-958. [30]THOMSEN K, KLIT P. Improvement of Journal Bearing Operation at Heavy Misalignment Using Bearing Flexibility and Compliant Liners[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2012,226(8):651-660. [31]THOMAS H, HUBERT S. Theoretical and Experimental Analyses of Directly Lubricated Tilting-pad Journal Bearings with Leading Edge Groove[J]. Journal of Engineering for Gas Turbines and Power,2019,141(5):051010. [32]ROLINK A, SCHRDER T, JACOBS G, et al. Feasibility Study for the Use of Hydrodynamic Plain Bearings with Balancing Support Characteristics as Main Bearing in Wind Turbines[J]. Journal of Physics:Conference Series, 2020, 1618(5):052002. [33]Abschlussbericht.Thermisch Gespritzte Gleitlagerbeschichtungen für Hauptlager von Windenergieanlagen(WEA)—WEA Triebstrang und Oberflchentechnik[EB/OL].[2024-01-09]. https:∥www.tib.eu/en/search?tx_tibsearch_search%5Baction%5D=download&tx_tibsearch_search%5Bcontroller%5D=Download&tx_tibsearch_search%5Bdocid%5D=TIBKAT%3A1686138954. [34]SCHRDER T N. Konisches Gleitlager für die Rotorlagerung einer Windenergieanlage, eng:Conical Sliding Bearing for the Rotor Main Bearing of a Wind Turbine[EB/OL].[2024-01-09]. https:∥publications.rwth-aachen.de/record/820398. [35]ROLINK A, JACOBS G, PREZ A, et al. Sensitivity Analysis of Geometrical Design Parameters on the Performance of Conical Plain Bearings for Use as Main Bearings in Wind Turbines[J]. Journal of Physics Conference Series, 2022, 2265(3):32010. [36]ZUO X,WANG J,YIN Z, et al. Comparative Performance Analysis of Conical Hydrostatic Bearings Compensated by Variable Slot and Fixed Slot[J]. Tribology International,2013,66:83-92. [37]SCHRDER T, JACOBS G, BOSSE D. Sliding Moment Bearing as a Main Bearing in Wind Turbine Generators[C]∥Conference for Wind Power Drives 2017. Aachen, 2017:1-18. [38]Mathias Hofmann. Neue Herausforderungen für Rotorlagerungen in der 8-MW-Offshore Klasse[EB/OL].[2024-01-09]. http:∥evolution.skf.com/de/neue-herausforderungen-fuerrotorlagerungen-in-der-8-mw-offshore-klasse. [39]BASSANI R. Hydrostatic Self-regulating Multipad Journal and Integral Bearings[J]. Tribology Transactions, 2013,56(2):187-195. [40]ZUO B X, WANG M J, YIN Q Z, et al. Self-compensated Precision Hydrostatic Rotary Bearing[J]. Advanced Materials Research,2013,2290(662):674-677. [41]SHARMA C S, PHALLE M V, JAIN S. Performance Analysis of a Multirecess Capillary Compensated Conical Hydrostatic Journal Bearing[J]. Tribology Intererntion,2011,44(5):617-626. [42]王凤才,李忠,徐华,等.支点位置分布对径向可倾瓦滑动轴承热动力润滑性能的影响[J].润滑与密封,1999(3):7-9. WANG Fengcai, LI Zhong, XU Hua, et al. The Influence of Fulcrum Position Distribution on the Thermal Dynamic Lubrication Performance of Radial Tilting Pad Sliding Bearings[J]. Lubrication and Sealing, 1999(3):7-9. [43]王凤才,徐华,朱均.大型径向可倾瓦滑动轴承热动力润滑性能的研究[J].西安交通大学学报,1999(8):55-58. WANG Fengcai, XU Hua, ZHU Jun. Research on the Thermodynamic Lubrication Performance of Large Radial Tilting Pad Sliding Bearings[J]. Journal of Xian Jiaotong University, 1999,(8):55-58. [44]陈涛,邵钢,叶盛鉴.非均布变包角可倾瓦轴承性能分析[J].舰船科学技术,2016,38(23):74-78. CHEN Tao, SHAO Gang, YE Shengjian. Performance Analysis of Non-uniform Variable Enveloping Angle Tilting Pad Bearings[J]. Ship Science and Technology, 2016,38(23):74-78. [45]范寿孝,武中德,吴军令,等.大型贯流机组非均布可倾瓦径向轴承研究[Z]. 哈尔滨:哈尔滨电机厂有限责任公司,[2024-01-09]. FAN Shouxiao,WU Zhongde,WU Junlin,et al. Research on Non uniformly Distributed Tilting Pad Radial Bearings for Large Tubular Flow Units[Z]. Harbin:Harbin Electric Power Plant Co., Ltd.,[2024-01-09]. [46]何长昭,王文东,邹华.耐高温聚合物基自润滑轴承材料的摩擦学研究进展[J].化工新型材料,2020,48(5):37-41. HE Changzhao, WANG Wendong, ZOU Hua. Research Progress in Tribology of High-temperature Resistant Polymer Based Self-lubricating Bearing Materials[J]. New Chemical Materials, 2020,48(5):37-41. [47]李长林,黄志刚,翁云宣.PEEK特种工程塑料耐磨改性研究进展及其应用展望[J].中国塑料,2018,32(4):18-23. LI Changlin, HUANG Zhigang, WENG Yunxuan. Research Progress and Application Prospects of Wear Resistance Modification of PEEK Special Engineering Plastics[J]. China Plastics, 2018,32(4):18-23. [48]李志科,陈斯佳,马英杰,等.自润滑聚合物材料研究进展[J].高分子材料科学与工程,2020,36(8):165-172. LI Zhike, CHEN Sijia, MA Yingjie, et al. Research Progress in Self-lubricating Polymer Materials[J]. Polymer Materials Science and Engineering, 2020,36(8):165-172. [49]禹程洪,朱杰,张亚宾,等.PEEK复合材料及其在风电滑动轴承中的应用[J].轴承,2023(6):20-25. YU Chenghong, ZHU Jie, ZANG Yabin,et al. PEEK Composite Material and Its Application in Wind Power Sliding Bearings[J]. Bearing, 2023(6):20-25. [50]CHRISTOPH W, ANGELIKA K, HARDWIG B, et al. Performance of a Direct Bonded Sub-millimeter Peek Coating for Hydrodynamic Plain Bearings[J]. Tribol,2021,143(10):101801. [51]LU Z, LIU H, ZHU C, et al. Identification of Failure Modes of a PEEK-steel Gear Pair under Lubrication[J]. International Journal of Fatigue, 2019, 125:342-348. [52]ILLENBERGER C M, TOBIE T, STAHL K. Damage Mechanisms and Tooth Flank Load Capacity of Oil-lubricated Peek Gears[J]. Journal of Applied Polymer Science, 2022,139(30):1-10. [53]楚婷婷,李媛媛,孙小波,等.聚醚醚酮/聚四氟乙烯复合水润滑轴承材料性能研究[J].轴承,2015(5):35-37. CHU Tingting, LI Yuanyuan, SUN Xiaobo, et al. Study on the Properties of Polyether Ether Ketone/Polytetrafluoroethylene Composite Water Lubricated Bearing Materials[J]. Bearing, 2015(5):35-37. [54]王文东,袁周钢.PTFE微粉改性聚醚醚酮摩擦磨损性能及应用研究[J].有机氟工业,2021(2):32-36. WANG Wendong, YUAN Zhougang. Research on the Friction and Wear Performance and Application of PTFE Micropowder Modified Polyether Ether Ketone[J]. Organic Fluorine Industry, 2021(2):32-36. [55]ZHANG L, LI G, GUO Y, et al. PEEK Reinforced with Low-loading 2D Graphitic Carbon Nitride Nanosheets:High Wear Resistance under Harsh Lubrication Conditions[J]. Composites Part A,2018,109,507-516. [56]TENG X, WEN L, LYU Y, et al. Effects of Potassium Titanate Whisker and Glass Fiber on Tribological and Mechanical Properties of PTFE/PEEK Blend[J]. High Performance Polymers,2018,30(6):752-764. [57]田颖,车清论,贺仁,等.水润滑轴承用聚合物复合材料的摩擦学研究进展[J].材料保护,2024,57(1):111-122. TIAN Yin, CHE Qinglun, HE Ren, et al. Research Progress in Tribology of Polymer Composites for Water Lubricated Bearings[J]. Materials Protection, 2024,57(1):111-122. [58]RASHEVA Z, ZHANG G, BURKHART T .A Correlation between the Tribological and Mechanical Properties of Short Carbon Fibers Reinforced PEEK Materials with Different Fiber Orientations[J].Tribology International,2010,43(8):1430-1437. [59]CHUNMING J, BING W, JIQIANG H, et al. Effect of Different Preparation Methods on Mechanical Behaviors of Carbon Fiber-reinforced PEEK-titanium Hybrid Laminates[J].Polymer Testing,2020,85:106462. [60]DAI G, ZHAN L, GUAN C, et al. The Effect of Moulding Process Parameters on Interlaminar Properties of CF/PEEK Composite Laminates[J].High Performance Polymers,2020,32(7):835-841. [61]成烨,还大军,李勇,等.AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J].材料导报, 2020, 34(22):190-194. CHENG Ye, HUAN Dajun, LI Yong, et al. Optimization of Laser Consolidation Winding Process Parameters for AS4D/PEEK Thermoplastic Composite Materials[J]. Materials Review, 2020,34(22):190-194. [62]DAVIDE M, NORA L, MARCO L, et al. Friction and Wear Performance of Polyether Ether Ketone(PEEK) Polymers in Three Lubrication Regimes[J]. Friction, 2024,12(4):670-682. [63]PENG W, BIN Z. Improvement of Heat Treatment Process on Mechanical Properties of FDM 3D-Printed Short-and Continuous-fiber-reinforced PEEK Composites[J]. Coatings, 2022,12(6):827-827. [64]ZHENG Wen, WU Jiamin, CHEN Shuang, et al. Preparation of High-performance Silica-based Ceramic Cores with B4C Addition Using Selective Laser Sintering and SiO2-Al2O3 Sol Infiltration[J]. Ceramics International, 2023, 49(4):6620-6629. [65]HOSKINS T, DEARN K, KUKUREKA S. Mechanical Performance of PEEK Produced by Additive Manufacturing[J]. Polymer Testing, 2018,70:70511-70519. [66]ZHANG Y, CHERN D, SCHULZ R, et al. Manufacturing and Tribological Behavior of Self-lubricating Duplex Composites:Graphite-reinforced Polymer Composites and Polymer-infiltrated Metal Networks[J]. Journal of Materials Engineering and Performance, 2020,30:103-115. [67]BIN ABDOLLAH M F, AMIRUDDIN H, ALIF AZMI M, et al. Lubrication Mechanisms of Hexagonal Boron Nitride Nano-additives Water-based Lubricant for Steel-steel Contact[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2020,235(5):1038-1046. [68]GEBRETSADIK D W, HARDELL J, PRAKASH B. Friction and Wear Characteristics of Different PB-free Bearing Materials in Mixed and Boundary Lubrication Regimes[J]. Wear,2015,340/341:63-72. [69]YANG J, PALAZZOLO A. CFD Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling—Part Ⅱ:Implementation with Machine Learning[J]. Journal of Tribology,2020,143(1):1-47. [70]YANG J, PALAZZOLO A. CFD Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling—Part Ⅰ:TEHD-CFD Model Validation and Improvements[J]. Journal of Tribology,2020,143(1):1-50. [71]KUANG F, ZHOU X, LIU Z, et al. Computer-vision-based Research on Friction Vibration and Coupling of Frictional and Torsional Vibrations in Water-lubricated Bearing-shaft System[J]. Tribology International, 2020;150:106336. [72]KUSHARE B P, SHARMA C S. Nonlinear Transient Stability Study of Two Lobe Symmetric Hole Entry Worn Hybrid Journal Bearing Operating with Non-newtonian Lubricant[J]. Tribology International, 2014,69:84-101. [73]XIANG G,HAN Y. Study on the Tribo-dynamic Performances of Water-lubricated Microgroove Bearings during Start-up[J]. Tribology International,2020,151:1-16. [74]XIE Z, WANG X, ZHU W. Theoretical and Experimental Exploration into the Fluid Structure Coupling Dynamic Behaviors towards Water-lubricated Bearing with Axial Asymmetric Grooves[J]. Mechanical Systems and Signal Processing, 2022,168:108624. [75]HE M, ALLAIRE P, BARRETT L, et al. Thermohydrodynamic Modeling of Leading-edge Groove Bearings under Starvation Condition[J]. Tribology Transactions,2005,48(3):362-369. [76]胡杨,朱礼进,孟永钢.两相流中气泡含量对大型可倾瓦径向轴承性能影响的试验研究[J].机械工程学报,2021,57(11):220-227. HU Yang, ZHU Lijin, MENG Yonggang. Experimental Study on the Effect of Bubble Content in Two-phase Flow on the Performance of Large Tilting Pad Radial Bearings[J]. Journal of Mechanical Engineering, 2021,57(11):220-227. [77]MERMERTAS ,HAGEMANN T,BRICHART C. Optimization of a 900 mm Tilting-pad Journal Bearing in Large Steam Turbines by Advanced Modeling and Validation[J]. Journal of Engineering for Gas Turbines and Power,2019,141(2):021033. [78]HAGEMANN T,ZEMELLA P,PFAU B,et al. Experimental and Theoretical Investigations on Transition of Lubrication Conditions for a Five-pad Tilting-pad Journal Bearing with Eccentric Pivot up to Highest Surface Speeds[J]. Tribology International,2020,142:106008. [79]李海江,王腾飞,郭四洲,等. 直驱风力发电机主轴承载荷分布数值分析[J]. 轴承,2021(11):37-41. LI Haijiang, WANG Tengfei, GUO Sizhou, et al. Numerical Analysis of Load Distribution on the Main Shaft of Direct Drive Wind Turbines[J]. Bearing, 2021(11):37-41. [80]ZHANG Ronghua, SONG Chaosheng, ZHOU Ye, et al. Dynamic Performances of Novel Misaligned Non-uniform Distributed Tilting-pad Bearing[J]. International Journal of Mechanical Sciences, 2024,268:109020. [81]陈鹤梅. 某型航空轴承试验台液压加载系统研究[D]. 长沙:中南大学, 2010. CHEN Hemei. Research on Hydraulic Loading System of a Certain Type of Aviation Bearing Test Bench[D]Changsha:Central South University, 2010. [82]KULHANEK C D. Dynamic and Static Characteristics of a Rocker-pivot,Tilting-pad Bearing with 50% and 60% Offsets[D]. College Station:Texas A&M University, 2010. [83]姜歌东,徐华,杨兆建,等. 一种基于 CAT 的滑动轴承特性测试方法[J]. 润滑与密封, 1999(5):49-51. JIANG Gedong, XU Hua, YANG Zhaojian,et al. A CAT Based Method for Testing the Characteristics of Sliding Bearings[J]. Lubrication and Sealing, 1999(5):49-51. [84]ZHANG K, WU T H, MENG Q H, et al. Ultrasonic Measurement of Oil Film Thickness Using Piezoelectric Element[J]. International Journal of Advanced Manufacturing Technology, 2018, 94(9/12):3209-3215. [85]ZHU J, ZHANG K, FENG K. Experimental Measurement of Oil Film Thickness Distribution in Titling-pad Thrust Bearings by Ultrasonic Piezoelectric Elements[J]. Journal of Vibration Engineering & Technologies, 2021, 9(6):1335-1346. [86]王晓伟,刘占生,张广辉,等.基于声发射的可倾瓦径向滑动轴承碰摩故障诊断[J].中国电机工程学报,2009,29(8):64-69. WANG Xiaowei, LIU Zhansheng, ZHANG Guanghui, et al. Diagnosis of Rubbing Fault in Tilting Pad Radial Sliding Bearings Based on Acoustic Emission[J]. Chinese Journal of Electrical Engineering, 2009, 29(8):64-69. [87]MOKHTARI N, PELHAM J G, NOWOISKY S, et al. Friction and Wear Monitoring Methods for Journal Bearings of Geared Turbofans Based on Acoustic Emission Signals and Machine Learning[J]. Lubricants, 2020, 8(3):1-27. |
[1] | 张嘉睿1, 何涛2, 苏桂龙1, 李阳阳1, 罗唯奇1, 程习康1, 周孟德1, 张洋1, 刘巍1. 筒式永磁联轴器传动特性解析算法及结构优化[J]. 中国机械工程, 2024, 35(09): 1575-1583. |
[2] | 李浩1, 谭建军1, 朱才朝1, 孙义忠2, 孙章栋3, 王红霞3. 斜齿轮啮合弯矩对风电齿轮箱行星轮滑动轴承瞬态润滑性能影响分析[J]. 中国机械工程, 2024, 35(06): 1010-1022. |
[3] | 唐浩, 谭建军, 李浩, 朱才朝, 叶伟, 孙章栋. 应用滑动轴承的风电齿轮箱行星轮系动力学建模及解耦方法[J]. 中国机械工程, 2024, 35(04): 591-601. |
[4] | 付振峰, 王振忠, 王彪. 微流控芯片流体动压抛光工艺研究[J]. 中国机械工程, 2024, 35(03): 534-540. |
[5] | 刘昊林, 刘小川, 任佳, 王计真, 董久祥, 方正. 无人直升机六足式起落架设计与控制算法[J]. 中国机械工程, 2023, 34(04): 421-430,439. |
[6] | 杨芳, 司东宏, 马喜强, 薛玉君, . 复合轴向力加载装置设计与力控制[J]. 中国机械工程, 2021, 32(11): 1315-1320,1329. |
[7] | 李彪1;孙军2;朱少禹2;付杨杨2;苗恩铭3;李云强4;朱桂香4. 计及轴颈轴向运动的径向滑动轴承润滑分析[J]. 中国机械工程, 2019, 30(18): 2150-2155,2163. |
[8] | 杨世平1;谭博思1;夏天宇1;朱杰2;丁强明2. 基于少子样的核主泵电机滑动轴承可靠性研究[J]. 中国机械工程, 2019, 30(15): 1804-1812. |
[9] | 崔国华1;刘健1;马良2;崔康康1. 混凝土管端口打磨机器人设计及力学性能分析[J]. 中国机械工程, 2019, 30(06): 665-671. |
[10] | 李强, 张硕, 马龙, 许伟伟, 郑水英. 基于流固耦合的多油楔滑动轴承动特性研究[J]. 中国机械工程, 2017, 28(09): 1050-1055,1117. |
[11] | 曾达幸, 李晓帆, 邱雪松, 常威, 侯雨雷. 新型三平移解耦并联机构的综合[J]. 中国机械工程, 2015, 26(10): 1279-1283. |
[12] | 毛文贵, 韩旭, 刘桂萍 . 基于流固耦合的滑动轴承非线性油膜动特性研究[J]. 中国机械工程, 2014, 25(3): 383-387,403. |
[13] | 魏塬, 徐武彬, 曾海景, 张周强. 尺寸误差对转子系统摩擦功率的影响[J]. 中国机械工程, 2012, 23(11): 1345-1349. |
[14] | 李仕华, 句彦儒, 王志松, 孙龙庆, 李富娟. 一种新构型3-RRRRR并联微动机构的研究 [J]. 中国机械工程, 2011, 22(22): 2662-2666. |
[15] | 张宏献, 徐武彬, 王镇江, 陈其兵, 李冰. 椭圆度对椭圆滑动轴承稳定性的影响 [J]. 中国机械工程, 2011, 22(20): 2466-2469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||