[1]BROEK D.Elementary Engineering Fracture Mechanics[J].Journal of Applied Mechanics,1984,42(3):751-752.
[2]STEPHENS R I,FATEMI A,STEPHENS R R,et al.Metal Fatigue in Engineering[J].Journal of Engineering Materials & Technology,2001,103(4):415-432.
[3]陈凌,蒋家羚,范志超,等.低周疲劳寿命预测的能量模型探讨[J].金属学报,2006,42(2):195-200.
CHEN Ling,JIANG Jialing,FAN Zhichao,et al.Disscussion of Energy Models for Low Cycle Fatigue Life Prediction[J].Acta Mentallurgica Sinica,2006,42(2):195-200.
[4]IMANIAN A,MODARRES M.A Thermodynamic Entropy-based Damage Assessment with Applications to Prognostics and Health Management[J].Structural Health Monitoring,2017(2):147592171668956.
[5]姚磊江,童小燕,吕胜利.低周疲劳过程中的非弹性响应和热响应[J].西北工业大学学报,2003,21(1):83-86.
YAO Leijiang,TONG Xiaoyan,LYU Shengli.Inelastic Response and Thermal Response during Low Cycle Fatigue[J].Journal of Northwestern Polytechnical University,2003,21(1):83-86.
[6]BRYANT M D,KHONSARI M M,LING F F.On the Thermodynamics of Degradation[J].Proceedings Mathematical Physical & Engineering Sciences,2008,464(2096):2001-2014.
[7]AMIRI M,KHONSARI M M.On the Role of Entropy Generation in Processes Involving Fatigue[J].Entropy,2011,14(1):24-31.
[8]陈凌,张贤明,刘飞,等.一种基于熵增理论的疲劳-蠕变交互作用损伤模型及试验验证[J].中国机械工程,2016,27(10):1393-1398.
CHEN Ling,ZHANG Xianming,LIU Fei,et al.A Fatigue-Creep Interaction Damage Model Based on Entropy Increase Theory and Experimental Verification[J].China Mechanical Engineering,2016,27(10):1393-1398.
[9]陈凌,张贤明,刘飞,等.镁合金低周疲劳寿命预测模型探讨[J].中国机械工程,2017,28(5):512-518.
CHEN Ling,ZHANG Xianming,LIU Fei,et al.Investigation of Low Cycle Fatigue Life Prediction Model for Magnesium Alloys[J].China Mechanical Engineering,2017,28(5):512-518.
[10]NADERI M,KHONSARI M M.Real-time Fatigue Life Monitoring Based on Thermodynamic Entropy[J].Structural Health Monitoring,2011,9(4):189-197.
[11]BASARAN C,NIE S.An Irreversible Thermodynamics Theory for Damage Mechanics of Solids[J].International Journal of Damage Mechanics,2004,13(3):205-223.
[12]LEMAITRE J.Mechanics of Solid Materials[M].Cambridge: Cambridge University Press,1990.
[13]AMIRI M,NADERI M,KHONSARI M M.An Experimental Approach to Evaluate the Critical Damage[J].International Journal of Damage Mechanics,2011,20(1):89-112.
[14]VOYIADJIS G Z,FAGHIHI D.Thermo-mechanical Strain Gradient Plasticity with Energetic and Dissipative Length Scales[J].International Journal of Plasticity,2012,30/31:218-247.
[15]NADERI M,AMIRI M,KHONSARI M M.On the Thermodynamic Entropy of Fatigue Fracture[J].Proceedings Mathematical Physical & Engineering Sciences,2010,466(2114):423-438.
[16]NADERI M,KHONSARI M M.An Experimental Approach to Low-cycle Fatigue Damage Based on Thermodynamic Entropy[J].International Journal of Solids & Structures,2010,47(6):875-880.
[17]NADERI M,KHONSARI M M.A Thermodynamic Approach to Fatigue Damage Accumulation under Variable Loading[J].Materials Science & Engineering:A,2010,527(23):6133-6139.
[18]MORROW J D.Cyclic Plastic Strain Energy and Fatigue of Metals[J].ASTM STP,1965:45-86.
[19]李益民,王金瑞.低周疲劳中的塑性应变能[J].物理测试,1988(4):21-24.
LI Yimin,WANG Jinrui.Plastic Strain Energy in Low Cycle Fatigue[J].Physical Testing,1988(4):21-24.
[20]罗云蓉,王清远,刘永杰,等.Q235、Q345钢结构材料的低周疲劳性能[J].四川大学学报(工程科学版),2012,44(2):169-175.
LUO Yunrong,WANG Qingyuan,LIU Yongjie,et al.Low Cycle Fatigue Properties of Steel Structure Materials Q235 and Q345[J].Journal of Sichuan University (Engineering Science Edition),2012,44(2):169-175. |