Abstract:The RSM of Box-Behnken design (BBD) was adopted in cutting force experiments about Fe-based amorphous alloy spray-fused coatings. And then four factor and three level tests of Fe-based amorphous alloy spray-fused coating machining scheme were designed by means of BBD experiments. The influence laws of tool and cutting parameters (cutting speed,feed and cutting depth) on cutting force components were analysed and these influence reasons were discussed. Significant levels of factors affected the cutting force components were obtained by the applications of variance analysis method, which offered the optimum cutting parameters in lower cutting speeds. According to multiple quadratic fitting of testing data, the least square regressive method predictive formula for the cutting forces of Fe-based amorphous alloy spray-fused coating was established. Finally, the feasibility and practicability of the models for cutting forces was verified through practical examples.
王敏. 铁基非晶合金涂层切削工艺参数优化和切削力预测[J]. 中国机械工程, 2017, 28(21): 2627-2631,2638.
WANG Min. Cutting Parameter Optimization and Cutting Force Prediction for Fe-based Amorphous Alloy Spray-fused Coatings. China Mechanical Engineering, 2017, 28(21): 2627-2631,2638.
WANG Min. Forming Mechanism and Tribological Properties of FeAlCrNSiNb Amorphous Coating Deposited by High Velocity Arc Spraying[J]. Journal of Aeronautical Materials,2016,36(2):14-20.
ZHANG Wei, GUO Yongming, CHEN Yongxiong. Application and Future Development of Thermal Spraying Technologies for Remanufacturing Engineering[J].China Surface Engineering,2011,24(6):1-9.
ZHAO Guoqiang, ZHANG Song. Wear Resistance and Corrosion Resistance of Fe-based Amorphous Alloy Coatings[J]. Rare Metal Materials and Engineering,2016,45(4):957-962.
XU Liming, LI Rongzhou,XU Kaizhou, et al. Numerical Simulation and Experiments on High Hardness Coating Grinding Temperature Field[J].Journal of Shanghai Jiaotong University,2011,45(11):1705-1709.
[5]
邓朝辉. 纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究[D].长沙:湖南大学,2004.
DENG Zhaohui. The Research on the Precision Grinding Mechanisms and Simulation Prediction Techniques for Nanostructured Ceramic Coatings[D]. Changsha: Hunan University,2004.
[6]
蒙哥马利.实验设计与分析[M]. 汪仁官,陈荣昭,译.2版.北京:中国统计出版社,2005.
MONTGOMERY D C. Design and Analysis of Experiments [M]. WANG Renguan, CHEN Rongzhao, Translates. 2nd ed.Beijing: China Statistics Press,2005.
HUANG Tianran, SHI Yaoyao, XIN Hongmin. Parameters Optimization on Surface Stress for Titanium Alloy Based on Disk Milling Process[J].Computer Integrated Manufacturing System,2015,21(9):2403-2409.
WU Wenge, LIU Lijuan, FAN Peng, et al. Application of Response Surface Methodology in Surface Roughness Prediction Model and Parameter Optimization for High-speed Milling Ti6A14V[J]. Manufacturing Technology & Machine Tool,2014(1):39-43.
WANG Lei, LIU Qiao, MEi Weijiang, et al. Optimization of Milling Parameters Based on Response Surface Methodology[J]. Machine Tool & Hydraulic,2013,41(10):7-10.
[11]
CHOU Y K, EVANS C J. White Layers and Thermal Modeling of Hard Turned Surfaces[J]. International Journal of Machine Tools & Manufacture,1999,39(12):1863-1881.
[12]
GAITONDE V N, KARNIK S R, FIGUEIRA L, et al. Machinability Investigations in Hard Turning of AISI D2 Cold Work Tool Steel with Conventional and Wiper Ceramic Inserts[J]. International Journal of Refractory Metals and Hard Materials,2009,27(4):754-763.
MA Fengshi, LIU Chuanbing. Six Sigma Management Guideline—Guide to Using the MINITAB[M]. Beijing: China Renmin University Press,2007:400-488.
[14]
SUBRAMANIAN M, SAKTHIVEL M, SOORY-APRAKASH K, et al. Optimization of Cutting Parameters for Cutting Force in Shoulder Milling of Al 7075-T6 Using Response Surface Methodology and Genetic Algorithm[J].Procedia Engineering,2013,64(12):690-700.
[15]
汪振华. 防锈铝合金弱刚度复杂构件高速铣削工艺研究[D]. 南京: 南京理工大学,2009.
WANG Zhenhua. Study on the High-speed Milling Process For the Weak Rigidity Workpieces of Anti-rust Aluminum Alloy[D]. Nanjing: Nanjing University of Science and Technology,2009.