中国机械工程 ›› 2013, Vol. 24 ›› Issue (1): 125-135.
刘德顺1;戴巨川1;胡燕平1;沈祥兵2,3
出版日期:
2013-01-10
发布日期:
2013-01-23
基金资助:
Liu Deshun1;Dai Juchuan1;Hu Yanping1;Shen Xiangbing2,3
Online:
2013-01-10
Published:
2013-01-23
Supported by:
摘要:
在各种可再生能源利用中,风能是使用最为广泛和发展最快的可再生能源之一,是近期内最具有大规模开发利用前景的可再生资源。通过对风力发电产业现状进行梳理、归纳和分析,总结了风电机组未来发展趋势,并对风电机组风轮气动分析、载荷计算与分析、结构动力学与控制、能量流传递与调控和变桨距系统等研究现状和面临的问题进行了分析。指出风电机组是涉及多学科理论的复杂非线性系统,包含多物理场和多物理过程,在进一步深入研究过程中,应充分运用多学科知识,采用系统科学的思想方法才能获得全面深入的研究结果。
中图分类号:
刘德顺1, 戴巨川1, 胡燕平1, 沈祥兵2, 3. 现代大型风电机组现状与发展趋势[J]. 中国机械工程, 2013, 24(1): 125-135.
LIU De-Shun-1, DAI Ju-Chuan-1, HU Yan-Beng-1, CHEN Xiang-Bing-2, 3. Status and Development Trends of Modern Large-scale Wind Turbines[J]. China Mechanical Engineering, 2013, 24(1): 125-135.
[1]World Wind Energy Report.[2011-10-25]. http://www.wwindea.org. [2]周安美, 于德介, 吴雪明, 等. 基于本体的大型风力发电机组故障智能诊断研究[J]. 中国机械工程, 2012,23(17): 2075-2080. Zhou Anmei, Yu Dejie, Wu Xueming, et al. Research on Intelligent Fault Diagnosis for Large-Scale Wind Turbines Based on Ontology[J]. China Mechanical Engineering, 2012,23(17): 2075-2080. [3]戴庚, 徐璋, 皇甫凯林,等. 垂直轴风力机研究进展[J]. 流体机械, 2010, 38(10): 39-43. Dai Geng, Xu Zhang, Huangfu Kailin, et al. Recent Research Progress in the Vertical Axis Wind Turbine[J]. Fluid Machinery, 2010, 38(10): 39-43. [4]李岩. 垂直轴风力机应用及其发展前景[J]. 可再生能源, 2009, 27(6): 118-120. Li Yan. Application and Prospect of Vertical Axis Wind Turbine[J]. Renewable Energy Resources, 2009, 27(6): 118-120. [5]叶杭冶. 风力发电机组的控制技术[M]. 北京: 机械工业出版社, 2008. [6]孙伟, 董荣梅, 许焕卫. 基于键合图的风电齿轮传动系统稳健优化设计[J]. 中国机械工程, 2009,20(21): 2549-2553. Sunwei, Dong Rongmei, Xu Huanwei. Robust Optimizati on Design of the Gear Transmission of Wind Turbine Based on Bond Graph[J]. China Mechanical Engineering, 2009,20(21): 2549-2553. [7]姚兴佳, 宋俊. 风力发电机组原理与应用[M].北京: 机械工业出版社, 2009. [8]李晓燕, 余志. 海上风力发电进展[J]. 太阳能学报, 2004, 25(1): 78-84. Li Xiaoyan, Yu Zhi. Developments of Offshore Wind Power[J]. Acta Energiae Solaris Sinica, 2004, 25(1): 78-84. [9]黄东风. 欧洲海上风电的发展[J]. 能源工程, 2008(2): 24-27. Huang Dongfeng.The Survey of Off-Shore Wind Power Development in Europe[J]. Energy Engineering, 2008(2): 24-27. [10]Rademakers L W M M, Braam H, Zaaijer M B, et al. Assessment and Optimization of Operation and Maintenance of Offshore Wind Turbines[C]//Proceedings of the European Wind Energy Conference. Madrid,Spain, 2003. [11]Obdam T, Rademakers L, Braam H, et al. Estimating Costs of Operation &Maintenance for Offshore Wind Farms[C]//European Offshore Wind Energy Conference. Milan,Italy,2007:ECN-M-07-045. [12]Heronemus W E. Pollution-Free Energy From Offshore Winds[C]//8th Annual Conference and Exposition Marine Technology Society. Washington D C, 1972. [13]Butterfield S, Musial W, Jonkman J, et al. Engineering Challenges for Floating Offshore Wind Turbines[C]//Copenhagen Offshore Wind Conference. Copenhagen, Denmark, 2005:NREL/CP-500-38776. [14]Thanet Offshore Wind Farm.[2011-10-25].http://www.vattenfall.co.uk/en/thanet-offshore-wind-farm.htm. [15]Hansen M O L. Aerodynamics of Wind Turbines[M]. 2nd Edition.London,UK: Eaethscan, 2008. [16]Lanzafame R, Messina M. Fluid Dynamics Wind Turbine Design: Critical Analysis, Optimization and Application of Bem Theory[J]. Renewable Energy, 2007, 32(14): 2291-2305. [17]He C. Development and Application of a Generalized Dynamic Wake Theory for Lifting Rotors[D].Georgia: Georgia Institute of Technology, 1989. [18]Hartwanger D, Horvat A. 3d Modelling of a Wind Turbine Using CFD[C]//Nafems UK Conference. Cheltenham, United Kingdom, 2008. [19]Moriarty P, Hansen A. Aerodyn Theory Manual[M]. Golden:National Renewable Energy Laboratory,2005. [20]Theodorsen T. General Theory of Aerodynamic Instability and the Mechanism of Flutter[R].Washington D C:NACA, 1935:413-433. [21]Mccroskey W, Carr L, Mcalister K. Dynamic Stall Experiments on Oscillating Airfoils[J]. Aiaa Journal, 1976, 14(1): 57-63. [22]Wilby P. The Aerodynamic Characteristics of Some New Rae Blade Sections, and Their Potential Influence on Rotor Performance[J]. Vertica, 1980, 4(2): 121-133. [23]Leishman J. Dynamic Stall Experiments on the Naca 23012 Aerofoil[J]. Experiments in Fluids, 1990, 9(1): 49-58. [24]Akbari M, Price S. Simulation of Dynamic Stall for A Naca 0012 Airfoil Using a Vortex Method[J]. Journal of Fluids and Structures, 2003, 17(6): 855-874. [25]Ekaterinaris J, Platzer M. Computational Prediction of Airfoil Dynamic Stall[J]. Progress in Aerospace Sciences, 1998, 33(11/12): 759-846. [26]Guilmineau E, Queutey P. Numerical Study of Dynamic Stall on Several Airfoil Sections[J]. Aiaa Journal, 1999, 37(1): 128-130. [27]Osswald G, Ghia K, Ghia U. Simulation of Dynamic Stall Phenomenon Using Unsteady Navier-Stokes Equations[J]. Computer Physics Communications, 1991, 65(1/3): 209-218. [28]Spentzos A, Barakos G, Badcock K, et al. Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics[J]. Aiaa Journal, 2005, 43(5): 1023-1033. [29]Carr L. Progress in Analysis and Prediction of Dynamic Stall[J]. Journal of Aircraft, 1988, 25(1): 6-17. [30]Beddoes T. Representation of Airfoil Behaviour[J]. Vertica, 1982, 7(2): 183-197. [31]Tan C, Carr L. The Afdd International Dynamic Stall Workshop on Correlation of Dynamic Stall Models with 3-D Dynamic Stall Data[R].Houston:NACA, 19960047109. [32]贺德馨. 风工程与工业空气动力学[M].北京: 国防工业出版社, 2006. [33]Burton T, Sharpe D, Jenkins N, et al. Wind Energy Handbook[M].New York: John Wiley & Sons Ltd., 2005. [34]Sarpkaya T, Isaacson M, Wehausen J. Mechanics of Wave Forces on Offshore Structures[J]. Journal of Applied Mechanics, 1982, 49(2): 466-467. [35]Longuet-Higgins M. the Effect of Non-Linearities on Statistical Distributions in the Theory of Sea Waves[J]. Journal of Fluid Mechanics, 1963, 17(3): 459-480. [36]Sharma J N, Dean R G. Development and Evaluation of A Procedure for Simulating A Random Directional Second Order Sea Surface and Associated Wave Forces[R]. Newark:University of Delaware,1979. [37]Sharma M S R, Hensel J, Baxter C D P, et al. Development of a Technology Type Factor for Jacket Structures for Offshore Windturbines in Rhode Island[R]. Rhode Island:University of Rhode Island, 2010. [38]Agarwal P, Manuel L. Wave Models for Offshore Wind Turbines[C]//46th Aiaa Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008:AIAA-2008-1336. [39]Henderson A R, Zaaijer M B, Camp T R. Hydrodynamic Loading on Offshore Wind Turbines[C]//Owemes Conference. Naples, Italy,2003. [40]Gravesen H, Tarp-Johansen N J, V Lund P. Combined Loads From Wind, Waves and Ice on Offshore Wind Turbine Foundations[C]//European Wind Energy Conference. Copenhagen, 2001. [41]Seidel M, Mutius M, Rix P, et al. Integrated Analysis of Wind and Wave Loading for Complex Support Structures of Offshore Wind Turbines[C]//Conference Proceedings Offshore Wind. Copenhagen, 2005. [42]Jonkman J M, M L Buhl J. Loads Analysis of A Floating Offshore Wind Turbine Using Fully Coupled Simulation[C]//Windpower 2007 Conference & Exhibition. Los Anaeles, California, 2007:NREL/CP-500-41714. [43]Moriarty P J, Butterfield S. Effect of Turbulence Variation on Extreme Loads Prediction for Wind Turbines[J]. Journal of Solar Energy Engineering, 2002, 124(4): 387-395. [44]Buhl Jr M L, Jonkman J M, Wright A D, et al. Fast User’s Guide[M]. Golden:National Renewable Energy Laboratory,2002. [45]Agarwal P, Manuel L. Empirical Wind Turbine Load Distributions Using Field Data[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(1): 011006. [46]Peeringa J. Comparison of Extreme Load Extrapolations Using Measured and Calculated Loads of A Mw Wind Turbine[C]//European Wind Energy Conference. Marseille, France, 2009:ECN-M-09-055. [47]Fitzwater L R M, Winterstein S R. Predicting Design Wind Turbine Loads from Limited Data: Comparing Random Process and Random Peak Models[J]. Journal of Solar Energy Engineering, 2001, 123(4): 364-371. [48]李本立, 宋宪耕, 贺德馨,等, 风力机结构动力学[M].北京: 北京航空航天大学出版社, 1999. [49]Paluch B, Berlu P. A Computer-Aided Approach of Loads Prediction for Hawt Based on Flexible Multibody Dynamics[C]//European Wind Energy Conference. Nice, France, 1999: 270-276. [50]Lee D, Hodges D, Patil M. Multi-Flexible-Body Dynamic Analysis of Horizontal Axis Wind Turbines[J]. Wind Energy, 2002, 5(4): 281-300. [51]李德源, 叶枝全, 黄小华. 风力机旋转叶片动力学方程的 Neumann级数解法[J]. 太阳能学报, 2007, 28(3): 280-284. Li Deyuan,Ye Zhiquan,Huang Xiaohua. The Neumann Series Solution of Rotating Blade Dynamic Equations of Horizontal Axis Wind Turbine[J]. Acta Energiae Solaris Sinica, 2007, 28(3): 280-284. [52]Geyler M, Caselitz P. Robust Multivariable Pitch Control Design for Load Reduction on Large Wind Turbines[J]. Journal of Solar Energy Engineering, 2008, 130(3): 031014. [53]刘雄, 李钢强, 陈严, 等. 水平轴风力机叶片动态响应分析[J]. 机械工程学报, 2010, 46(12): 128-134. Liu Xiong Li Gangqiang Chen Yan, et al. Dynamic Response Analysis of the Blade of Horizontal Axis Wind Turbines[J]. Journal of Mechanical Engineering, 2010, 46(12): 128-134. [54]陆萍, 秦惠芳, 栾芝云. 基于有限元法的风力机塔架结构动态分析[J]. 机械工程学报, 2002, 38(9): 127-130. Lu Ping, Qin Huifang, Luan Zhiyun. Dynamic Analysis of Tower Structure for Wind Turbine Based on Finite Element Method[J]. Journal of Mechanical Engineering, 2002, 38(9): 127-130. [55]Skaare B, Hanson T D, Nielsen F G. Importance of Control Strategies on Fatigue Life of Floating Wind Turbines[C]//Asme Conference Proceedings. Galfornia,2007: 493-500. [56]Larsen T J, Hanson T D. A Method to Avoid Negative Damped Low Frequent Tower Vibrations for a Floating, Pitch Controlled Wind Turbine[J]. Journal of Physics: Conference Series, 2007, 75(1): 012073. [57]Lackner M A, Rotea M A. Passive Structural Control of Offshore Wind Turbines[J]. Wind Energy, 2011, 14(3): 373-388. [58]Lackner M A, Rotea M A. Structural Control of Floating Wind Turbines[J]. Mechatronics, 2011, 21(4): 704-719. [59]Lackner M A. Controlling Platform Motions and Reducing Blade Loads for Floating Wind Turbines[J]. Wind Engineering, 2009, 33(6): 541-554. [60]Namik H, Stol K, Jonkman J. State-Space Control of Tower Motion for Deepwater Floating Offshore Wind Turbines[C]//27th AIAA/Asme Wind Energy Symposium. Reno, Nevada, 2008:AIAA-2008-1307. [61]Namik H, Stol K. Individual Blade Pitch Control of Floating Offshore Wind Turbines[J]. Wind Energy, 2010, 13(1): 74-85. [62]钟掘. 复杂机电系统耦合设计理论与方法[M].北京: 机械工业出版社, 2007. [63]Anderson P, Bose A. Stability Simulation of Wind Turbine Systems[J]. Power Apparatus and Systems, IEEE Transactions on, 1983,12: 3791-3795. [64]Veers P. Three-Dimensional Wind Simulation,SAND-88-0152C[R]. Albuquerque, NM:Sandia National Labs.,1988. [65]Welfonder E, Neifer R, Spanner M. Development and Experimental Identification of Dynamic Models for Wind Turbines[J]. Control Engineering Practice, 1997, 5(1): 63-73. [66]李东东, 陈陈. 风力发电系统动态仿真的风速模型[J]. 中国电机工程学报, 2005, 25(21): 41-44. Li Dongdong, Chen Chen. Wind Speed Model for Dynamic Simulation of Wind Power Generation System[J]. Proceedings of the Chinese Society for Electrical Engineering, 2005, 25(21): 41-44. [67]Hansen A, Michalke G. Modelling and Control of Variable-Speed Multi-Pole Permanent Magnet Synchronous Generator Wind Turbine[J]. Wind Energy, 2008, 11(5): 537-554. [68]Strachan N, Jovcic D. Dynamic Modelling, Simulation and Analysis of An Offshore Variable-Speed Directly-Driven Permanent-Magnet Wind Energy Conversion and Storage System (Wecss)[C]//Oceans 2007-Europe. Aberdeen,2007: 1-6. [69]Tan K, Islam S. Mechanical Sensorless Robust Control of Wind Turbine Driven Permanent Magnet Synchronous Generator for Maximum Power Operation[J]. International Journal of Renewable Energy Engineering, 2001, 3(3): 379-384. [70]金一丁, 宋强, 刘文华. 直驱永磁同步风电机组的建模与仿真分析[J]. 水电自动化与大坝监测, 2008, 32(5): 47-51. Jin Yiding, Song Qiang, Liu Wenhua. Modeling and Analysis of Direct-drive Permanent Magnet Synchronous Wind Generation System[J]. Hydropower Automation and Dam Monitoring, 2008, 32(5): 47-51. [71]尹明, 李庚银, 张建成,等. 直驱式永磁同步风力发电机组建模及其控制策略[J]. 电网技术, 2007, 31(15): 61-65. Yin Ming, Li Gengyin, Zhang Jiancheng, et al. Modeling and Control Strategies of Directly Driven Wind Turbine with Permanent Magnet Synchronous Generator[J]. Power System Technology,2007, 31(15): 61-65. [72]赵仁德, 王永军, 张加胜. 直驱式永磁同步风力发电系统最大功率追踪控制[J]. 中国电机工程学报, 2009, 29(27): 106-111. Zhao Rende, Wang Yongjun, Zhang Jiasheng. Maximum Power Point Tracking Control of the Wind Energy Generation System with Direct-Driven Permanent Magnet Synchronous Generators[J]. Proceedings of the Chinese Society for Electrical Engineering, 2009, 29(27): 106-111. [73]Morren J, Pierik J, De Haan S. Voltage Dip Ride-Through Control of Direct-Drive Wind Turbines[C]//39th International Universities Power Engineering Conference. Bristol, UK, 2004: 934-938. [74]杨晓萍, 段先锋, 田录林. 直驱永磁同步风电系统低电压穿越的研究[J]. 西北农林科技大学学报: 自然科学版, 2009,9(8): 228-234. Yang Xiaoping, Duan Xianfeng, Tian Lulin. Low Voltage Ride-through of Directly Driven Wind Turbine with Permanent Magnet Synchronous Generator[J]. Journal of Northwest A & F University, 2009,9(8): 228-234. [75]Burton T, Sharpe D, Jenkins N, et al. Wind Energy Handbook[M].New York: John Wiley & Sons Ltd., 2005. [76]Bossanyi E. Individual Blade Pitch Control for Load Reduction[J]. Wind Energy, 2003, 6(2): 119-128. [77]Bossanyi E. Further Load Reductions with Individual Pitch Control[J]. Wind Energy, 2005, 8(4): 481-485. [78]Geyler M, Caselitz P. Individual Blade Pitch Control Design for Load Reduction on Large Wind Turbines[C]//Proceedings of the European Wind Energy Conference. Milan, Italy,2007. [79]Selvam K, Kanev S, Van Wingerden J, et al. Feedback-Feedforward Individual Pitch Control for Wind Turbine Load Reduction[J]. International Journal of Robust and Nonlinear Control, 2008, 19(1): 72-91. [80]Larsen T J, Madsen H A, Thomsen K. Active Load Reduction Using Individual Pitch, Based on Local Blade Flow Measurements[J]. Wind Energy, 2005, 8(1): 67-80. [81]郭洪澈. 兆瓦级风电发电机组变桨距系统控制技术研究[D]. 沈阳: 沈阳工业大学, 2008. [82]林勇刚. 大型风力机变桨距控制技术研究[D]. 杭州: 浙江大学, 2005. |
[1] | 蒙康, 滕伟, 彭迪康, 向玲, 柳亦兵. 运行机理与数据双驱动的风电齿轮箱系统故障预警[J]. 中国机械工程, 2023, 34(12): 1476-1485. |
[2] | 刘东, 包道日娜, 刘旭江, 刘嘉文, 吴胜胜, 王鹏, 唐迪. 伞形风力机尾流特性及输出特性研究[J]. 中国机械工程, 2022, 33(14): 1751-1759. |
[3] | 秦大同, 吕雪慧, 陈锐博, 杨战斌. 运行工况下风电传动系统机电耦合建模及其动态特性分析[J]. 中国机械工程, 2022, 33(03): 253-260. |
[4] | 康爽, 陈长征, 赵思雨, 罗园庆, 孔祥希. 自适应差异多尺度形态学的风力机叶片红外图像增强研究[J]. 中国机械工程, 2021, 32(07): 786-792. |
[5] | 向斌1;缪维跑1,2;李春1,2;倪露露1. 动态格尼襟翼对垂直轴风力机性能的影响[J]. 中国机械工程, 2021, 32(02): 163-170. |
[6] | 汪泉;陈晓田;胡梦杰;曾利磊. 基于气动性能与刚度特性的风力机翼型优化设计[J]. 中国机械工程, 2020, 31(19): 2283-2289. |
[7] | 包道日娜;刘旭江;王小雪;王帅龙;刘嘉文. 小型水平轴可变偏心距风力机输出特性分析[J]. 中国机械工程, 2020, 31(18): 2196-2205. |
[8] | 邹锦华1;杨阳1;李春1,2;王渊博1;刘中胜1. 地震及多风况下风力机塔架动力响应[J]. 中国机械工程, 2019, 30(16): 1940-1949. |
[9] | 刘宇航;李春;周红杰;韩志伟. 三种海上风力机支撑基础与船舶碰撞的动力响应分析[J]. 中国机械工程, 2019, 30(14): 1653-1657. |
[10] | 岳敏楠1;李春1,2;郝文星1;张俊伟1. 气动弹片对翼型气动及噪声特性的影响[J]. 中国机械工程, 2019, 30(12): 1409-1416. |
[11] | 芮晓明;尹文良. 差动调速的风电机组传动特性研究[J]. 中国机械工程, 2019, 30(09): 1034-1040. |
[12] | 张立军;赵昕辉;马东辰;米玉霞;王旱祥;姜浩. 垂直轴风力机叶片改进动态失速模型[J]. 中国机械工程, 2019, 30(06): 638-643. |
[13] | 张旭1,2;张孟洁1;王格格1;李伟2,3;阮江涛1. 叶片表面粗糙条件下钝尾缘翼型优化设计[J]. 中国机械工程, 2019, 30(06): 728-734. |
[14] | 汪泉1;洪星1;杨建忠2;王君1;孙金风1;秦争争1. 低噪声风力机叶片气动外形优化设计[J]. 中国机械工程, 2018, 29(13): 1574-1579,1587. |
[15] | 黄致谦;丁勤卫;李春;汤金桦. 基于多岛遗传算法的漂浮式风力机稳定性多重调谐质量阻尼器优化控制[J]. 中国机械工程, 2018, 29(11): 1349-1356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||